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7. " *Conway’s llati

MATHEMATICAL GAMES

The fantastic combinations of John
Conway’s new solitaire game “life”

by Martin Gardner

Conway, a mathematician at
4 Gonville and Caius College of
the University of Cambridge, has been in
pure mathematics. For instance, in 1967
he discovered a new group—some call it

"—that includ

‘all but two of the then known sporadic
groups. (They are called “sporadic” be-
cause they fail to fit any classification
scheme.) It is a breakthrough that has
had exciting repercussions in both group

: h, ost of the work of John Horton

* . theory and number theory. It ties in

closely with an earlier discovery by John
Leech of an extremely dense packing of
unit spheres in a space of 24 dimensions
where each sphere touches 196,560 oth-
ers. As Conway has remarked, “There is
alotof room up there.” ~

In addition to such serious work Con~
way also enjoys recreational mathemat-

This month we consider Conway',
latest brainchild, a fantastic solitair:
astime he calls “life.” Because of its
analogies with the rise, fall and altera-
tions of a saciety of living organisms, it
belongs to a growing class of what are
called “simulation games"—games that
resemble reallife processes. To play
life you must have a fairly large check-
erboard and a plentiful supply of flat
counters of two colors. (Small checken
or poker chips do nicely.) An Oriental
“go” board can be used if you can find
flat counters that are small enough to fit
within its cells. (Go stones are unusable
because they are not fat.) It is possible
to work with pencil and graph paper but

=

. it is much easier, particularly for begin-

ners, to use counters and a board.
The basic idea is to start with a simple
fi jon of {org: ),

ics. Although he is highly p
this field, he seldom publishes his
eries. One exception was his paper on
“Mrs. Perkins’ Quilt,” a dissection prob-
lem di d in “Math n 1Gmes»4
for September, 1966. My topic for July,
1967, was sprouts, a topological pencil-
and-paper game invented by Conway
and M. S. Paterson. Conway has been
mentioned here several other times.

ive in.
di:

. 4
one to a cell, then observe how it changes

as you apply Conway's “genetic laws’
for births, deaths and survivals. Conway

" chose his rules carefully, after a long pe-

riod of experimentation, to meet three
desiderata:

1. There should be no initial patter
for which there is a simple proof that the
population can grow without limit.

2. There should be initial patterns

. that apparently do grow without limit.

& There should be simple initial pat
terns that grow and change for a consid
erable period of time before coming t
an end in three possible ways: fading
away completely (from overcrowding a
from becoming too sparse), settling inte
a stable configuration that remains us-
changed thereafter, or entering an oscik
lating phase in which they repeat u
endless cycle of two or more periods.

In brief, the rules should be such &
to make the behavior of the populatios
unpredictable.

‘Conway's genetic laws are delightfu-
ly simple. First note that each cell of the
checkerboard (assumed to be an infinite
has eight neighboring cells, fos
djacent orthogonally, four adjacent &

Ily. The rules are:
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The fate of five triplets in “life™

120

1. Survivals. Every counter with tw
or three neighboring counters survive
for the next generation.

2. Deaths. Each counter with four &
more neighbors dies (is removed) from
averpopulation, Every counter with 0%
neighbor or none dies from isolation.

3. Births. Each empty cell adjacent®
exactly three neighbors—no more, >
fewer—is a birth cell. A counter is place®
on it at the next move. - .

It is important to understand that &
births and deaths occur simultance
Together they constitute a single gener
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 or, as we shall call it, a “move” in
rcomplete “life history” of the initial
nfiguration. Conway recommends the
fgllowing procedure for making the

P¥ L Start with a pattem consisting of
 Mack counters. ’
"% 2 Locate all counters that will die.
JMentify them by putting a black counter
top of each.

§13. Locate all vacant cells where births

W1l occur. Put a white counter on each
~biyth cell, ’
}3 4. After the pattern has been checked

isd" double-checked to make sure no

takes have been made, remove all the

K counters (piles of two) and replace
"Lal' aewborn white organisms with black
oounters.,
i- You will now have the first generation
M the life history of your initial pattem.
pe same procedure is repeated to pro-
Moe subsequent generations. It should
clear why counters of two colors are
o Because births and deaths occur
‘ultaneously, newborn counters play
ole in causing other deaths or births.
% essential, therefore, to be able to
guish them from live counters of
$ previous generation while you check
% pattern to be sure no errors have
P made. Mistakes are very easy to
®, particularly when Brst playing the
&, After playing it for a while you.
& gmdually make fewer mistakes, but
% experienced players must exercise
%t care in checking every new genera-

 The life histories of the five tetrominoes

tion before removing the dead counters
and replacing newbom white counters
with black. - .

You will find the population constant-
ly undergoing unusual, sometimes beau-
tiful and always unexpected change. In
a few cases the society eventually dies
out (all counters vanishing), although
this may not happen until after a great
many generations. Most starting patterns

 either reach stable figures—Conway calls
them “still lifes”—that cannot change or
patterns that ‘oscillate forever. Patterns
with no initial symmetry tend to become
symmetrical. Once this happens the sym-
metry cannot be lost, although it may
increase in richness,

Conway conjectures that no pattern
can grow without limit, Put another way,
any configuration with a finite number
of counters cannat grow beyond a finite
upper limit to the number of counters on
the field. This is probably the deepest
and most difficult question posed by the
game. Conway has offered a prize of $50
to the first person who can prove or dis-
prove the conjecture before the end of
the year. One way to disprove it would
be to discover patterns that keep adding
counters to the field: a “gun” (a configur-
ation that repeatedly shoots out moving
objects such as the “glider,” to be ex-
plained below) or a “puffer train” (a con-
figuration that moves but leaves behind
a trail of “smoke”). 1 shall forward all
proofs to Conway, who will act as the
final arbiter of the contest.

Let us see what happens to a variety
of simple patterns. ’

A single organism or any pair of
counters, wherever placed, will obvious-
ly vanish on the first move,

A beginning pattern of three counters
also dies immediately unless at least one
counter has two neighbors. The illustra-
tion on the opposite page shows the five
triplets that do not fade on the first move.
(Their orientation is of course irrelevant.)
The first three [, b, ] vanish on the sec-
ond move. In connection with ¢ it is
worth noting that a single diagonal chain
of counters, however long, loses its end
counters on each move until the chain
finally disappears. The speed a chess
king moves in any direction is called by
Conway (for reasons to be made clear
later) the “speed of light.” We say, there-
fore, that a diagonal chain decays at
each end with the speed of light.

Pattern d becomes a stable “block”
(two-by-two square) on the second move,
Pattern e is the simplest of what are
called “flip-flops” (oscillating figures of
period 2). It alternates between horizon-
tal and vertical rows of three. Conway
calls it a “blinker.”

The illustration above shows the
life histories of the five tetrominoes
(four rookwise-connected counters). The
square [a] is, as we have seen, a still-life
figure. Tetrominoes b and ¢ reach a sta-
ble figure, called a “beehive,” on the sec-
ond move. Beehives are frequently pro-
duced patterns. Tetromino d becomes a
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come traffic lights. The only pen|
that does not end quickly (by vanishg
becoming stable or oscillating) is
R pentomino [“¢” in the illustration
the bottom of this page]. Its fate is
yet known. Conway has tracked ijt
460 moves. By then it has thrown off
number of gliders. Conway remarks:
has left a lot of miscellaneous junk sty
nating around, and has only a fewri
active regions, so it is not at all ob
that it will continue indefinitely..Af 1
48 moves it has become a figure of%.
counters on the left and two symmelrie
regions on the right which, if
turbed, would grow into a honey fa
(four beehives) and traffic lights. He
ever, the honey farm gets eaten into pre
ty quickly and the four blinkers formd
the traffic lights disappear one by one in
the rest of a rather blotchy population
For long-lived populations such
this one Conway sometimes uses a PDP,

I Y

The commonest stable forms

beehive on the third move. Tetromino e The reader may enjoy experimenting
is the most interesting of the lot. After with the 12 pentominoes (all patterns of
nine moves it becomes four isolated five rookwise-connected counters) to see
blinkers, a flip-flop called “traffic lights.”  what happens to each. He will find that
It too is a common configuration. The six vanish before the fifth move, two
illustration above shows the 12 common-  quickly reach 2 stable pattern of seven

est forms of still life. . counters and three in a short time be-

ﬁ%lr{

comp with a screen on which he cy
observe the changes. The program’
written by M. J. T. Guy and §.%
Bourne. Without its help some discofl
eries about the game would have bedf
difficult to make.

As easy exercises to be answered
month the reader is invited to disc
the fate of the Latin cross [“b” in the"
lustration ot the bottom of this page], 8%
swastika [c], the letter H {d], the bea
Lel, the clock [f], the toad [g] and o
pinwheel [2]. The last three figures wa
discovered by Simon Norton. If the o
ter counter of the H is moved up pils
cell to make an arch (Conway calls|
“pi”), the change is unexpectedly d&
tic. The H quickly ends but pi has a ko
history. Not until after 173 moves 1K
it settled down to five blinkers, six blog
and two ponds. Conway also has trackll
the life histories of all the hexomino
and all but seven of the heptominoes. -3

way’s di ies is the five- g
er shown in the top illustration on i
opposite page. After two moves it
s}ufted slightly and been reﬂected
a di ! line. G ters call &l

TT7T
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a ghde reflection”; hence the fig
name. After two more moves the glid
has righted itself and moved one ol
agonally down and to the right from B

that the speed of a chess king is ¢
the speed of light. Conway chose

The R pentomino (a) and exercises for the reader

phrase b it is the highest speed

which any kind of movement can ecg
on the board. No pattern can replid
itself rapidly enough to move at'S
speed. Conway has proved that the m)
mum speed diagonally is a fourth §



speed of light. Since the glider replicates
itself in the same orientation after four
moves, and has traveled one cell diag-
onally, one says that it glides across the
field at a fourth the speed of light.
Movement of a finite figure horizontal-
ly or vertically into empty space, Con-
way has also shown, cannot exceed half
the speed of light. Can any reader find a
relatively simple figure that travels at
such a speed? Remember, the speed is
obtained by dividing the number of
moves required to replicate a figure by
the number of cells it has shifted. If a
figure replicates in four moves in the
same orjentation after traveling two unit
squares horizontally or vertically, its
speed will be half that of light. I shall
report later on any discoveries by read-
ers of any Bgures that craw] across the
board in any direction at any speed,
however low. Figures that move in this
way are extremely hard to find. Conway
| knows of only four, including the glider,
which he calls “spaceships” (the glider
is a “featherweight spaceship”; the oth-
ers have more counters). He has asked
me to keep the three heavier spaceships
secret as a challenge to readers. Read
are also urged to search for periodic fig-
ures other than the ones given here.
The bottom illustration on this page
depicts three beautiful discoveries by
Conway and his collaborators. The sta-
ble honey farm [“a” in the fllustration]
results after 14 moves from a horizontal
row of seven counters. Since a five-by-
five block in one move produces the
fourth generation of this life history, it
becomes a honey farm after 11 moves.
The “figure 8” [b], an oscillator found
by Norton, both resembles an 8 and has
a period of 8. The form c, called “pulsar
CP 48-56-72,” is an oscillator with a life
cycle of period 3. The state shown here
has 48 counters, state two has 56 and
state three has 72, after which the pulsar
returns to 48 again. It is generated in 32
moves by a heptomino consisting of a
horizontal row of five counters with one

i

The “glider”

blinkers), 17 end with four blocks, 18
and 19 fade away and 20 generate two
blocks.

Rows consisting of sets of five count-
ers, an empty cell separating ‘adjacent
sets, have also been tracked by Conway.
The 5-5 row generates the pulsar CP
48-56-72 in 21 moves, 5-5-5 ends with
four blocks, 5~5-5-5 ends with four hon-
ey farms and four blinkers, 5-5-5-5-5
terminates with a “spectacular display of
eight gliders and eight blinkers. Then
the gliders crash in pairs to become
eight blocks.” The form 5-5-5-5-5-5
ends with four blinkers, and 5~5-5-5-
5-5-5, Conway remarks, “is marvelous
to sit watching on the computer screen.”
He has yet to track it to its ultimate des-
tiny, however.

Est month’s main problem was to de-

scribe the track that allows a square
wheel to roll along it so that its center
travels a straight horizontal line. The
track is a series of catenary arcs. This
applies to all wheels that are regular
polygons. (If a wheel is an irregular con-
vex polygon, the track must have arcs
that are differently shaped catenaries,
one for each side of the wheel.) If the
wheel] turns with a constant speed, its
horizontal speed will vary. For details of

the proof I must refer readers to “Rock-

ers and Rollers,” by Gerson B. Robison,
in Mathematics Magazine for January,
1960, pages 139-144, and the solution
to Problem E1668 in The American
Mathematical Monthly for January,
1965, pages 82-83. The riddle’s answer
is a pair of roller skates.

In July’s column on Diophantine
analysis 1 incorrectly said that Fermat's
last theorem had been proved for all ex-
ponents except primes greater than 2. 1
should have said that, i the theorem is
true for all prime exponents greater than
2, the general theorem holds. This is
quite a different matter, since it allows
counterexamples with composite expo-
nents,

Several readers generalized the Dio-
phantine problem, of the rectangle with
the border, to three dimensions, seeking
integral edges for a brick composed of
unit cubes equal to the number of umit
cubes required to cover it on all sides
with 2 one-unit layer of cubes. Daniel
Sleator of the University of Illinois used
a computer to find the complete sobu-
tion, a total of 20 bricks. The smallest-
volume brick has edges of 8, 10, 12; the
largest, 5, 13, 132. This confirms a guess
made by M. H. Greenblatt in Mathe-
matical Entertainments {Crowell, 1965),
page 11, that the problem has “about™
20 solutions.

counter directly below each end
of the row.

Conway has tracked the life histories

of a row of n counters through n = 20
We have already disclosed what happens
through n = 4. Five counters result in
traffic lights, six fade away, seven pro-
duce the honey farm, eight end with
four blinkers and four blocks, nine pro-
duce two sets of traffic lights, and 10
lead to the “pentadecathlon,” with a life
cycle of period 15. Eleven counters pro-
duce two blinkers, 12 end with two bee-
hives, 13 with two blinkers, 14 and 15
vanish, 16 give “big traffic lights” (eight
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Three remarkable patterns, one stable and two oscillating
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