1

HOOVER-ANDERSON RESEARCH and DESIGN

3x5 Character Set

INTRODUCTION

The 3 x 5 pixel character set is the smallest fully legible
character set that can be displayed on a raster-scan CRT.

The low resolution of the Arcade screen (160 pixels wide by

88 pixels high) mandates the use of high density characters

for text-intensive applications like adventure games,
correspondence, word processing and embedded game instructions.
The 3 x 5 character set gives the user 14 lines of 40 characters
each (B60 characters) compared to the 11 lines of 26 characters
each (286 characters) available from the on-board 5 x 7 pixel
character generator.

The 3 x 5 pixel character set was designed by Craig Anderson

for use by the designers of the Z-~Grass 32 add-under and was
incorporated into that system. When you have coded the following
utility you will get a preview of what the Z-Grass 100 screen
looks like.

THE PROGRAM

The 3 x 5 character set cdnsists of up to four parts; 1) The
Data Base; 2) The Interpreter; 3) the Data Base Decoder and
Display Routine; and 4) Text Storage.

1. The Data Base

Standard ASCII (American Standard Code for Information
Interchange) uses 128 numbers to represent all alphanumeric
characters, both upper and lower-case, and all control
commands necessary to drive any type of printer or terminal.
Jay Fenton modified the ASCII code for use in the Bally
BASTC and AstroBASIC. He threw out the lower-case codes,
since the hardware did not support lower-case, ignored most
of the control codes and substituted single-word command
statements for some of the lower-case codes.

2206 WEST 21st STREET - MINNEAPOLIS, MINNESOTA 55405 612-374 -3354

HOOVER~ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 2

The 3 x 5 character set does not support the single-word
commands or lower-case and also ignores all but two of the
control codes (ERASE and CARRIAGE RETURN). This freed half
of the ASCII codes so we threw them in the bit bucket and
reverted to a 64 number subset of ASCII called field data or,
in lighter moments, ‘''Half-ASCII".

Most of the punctuation and special symbols remain with the
exception of the really impossible and the '"who-needs-'em-
anyway' such as backward slash, dollar sign, left and right
arrow, ampersand, the '"at' sign and the crosshatch or
"pound" sign. :

All but eight of the 64 Half-ASCII codes are simple
displacements: subtract 30 from the standard ASCII code
and you will get the Half-ASCII value. The remaining eight
must be interpreted by the program so we have inserted
eight IF statements to check for these values.

The program (Appendix B) shows the 3 x. 5 character generator
in a typical form: set up for AstroBASIC using the *(n)
"reverse string” to store the 64 15-bit values (see Appendix
A - 3 x 5 Character Set Data Base - DATA column). To enter
this table into the computer, enter the 64 values in the DATA
column into the variables *{0) through *(63). The data base,
therefore, will require 128 bytes of memory that may not be
used for your program. You must stop programming when SZ
equals 128.

Suppose you are using Bally BASIC instead of AstroBASIC.
Bally BASIC does not support the *(n) variable, only the

@(n) "forward string'”. If you are using Bally BASIC instead
of AstroBASIC you must wait until your program is completed,
make sure that SZ is at least 128, then enter the 64 cells of
tabular data.

Suppose you can't afford the 128 bytes to store the data

base in the screen RAM text area. If you are the proud owner
of a Blue Ram, a Viper or a Z-Grass add-under, or any
expanded memory of your own concoction, you are home free

and may store the 128 byte data base anywhere you wish. If
not, there are no buffers large enough to hold 128 bytes of
data in any of the scratchpad or working areas of the Arcade
without its being clobbered by the temporary data that
rightfully comes and goes in those areas. You can experiment

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 3

with %(n) and store constant strings there (small phrases
or words, perhaps) but not the entire character set.

So, if you are working in AstroBASIC, enter the data base
in variables *(@) through *(63) now.

If you are working in Bally BASIC, the data base will be
the last thing to enter and you will put it in @(§) through
@(63).

2. The Interpreter

As mentioned before, this is a set of eight IF statements
that take care of the eight non-displacement values. There
is also an IF statement that takes care of any values falling
outside of the valid Half-ASCII range.

All nine Interpreter lines are only needed if full ASCII

code is being sent. Otherwise, if your text is already

encoded in six-bit Half-ASCII instead of seven-bit full

ASCII, you can leave out all but lines 18 and 19. The

carriage return, line 18, must be modified to read "IF A=61..."
instead of "IF A=-17..". We shall cover this more in the
section on Text Storage.

3. The Data Base Decoder and Display Routine

This is the heart of the 3 x 5 character set which takes

the indexed value from the data base (the contents of strings
@ through 63) and decodes it into a 3 pixel wide by 5 pixel
high dot pattern, which it displays on the screen.

The actual Decoder and Display Routine is only 157 bytes
long. It, together with the data base, occupies only 285
bytes of memory, leaving 1515 bytes for your program.

Each string position in the data base is a 16 bit word (2
bytes). The bits are numbered @ through 15, as usual, right
to left, with bit @ equal to 1, bit 1 equal to 2, bit 2 equal
to 4, etc. The 16th bit (bit 15) is equal to 32768. The
Arcade's Z-80 microprocessor cannot do signed arithmetic if
it uses this bit as a numeric value (32768) so this last bit
is called '"the sign bit", giving the Arcade a range from
-32767 to 32767. Since the 3 x 5 character set only needs

to set 15 pixels, (3 times 5), it does not use the sign bit.
You will notice that all numbers in the data base are positive
numbers and that division begins at 16384, not at 32768

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 4

or a sign test. Each bit from @ to 14

therefore represents one pixel. The 14113 |12
pixels in the character matrix are

arranged as shown in the diagram. The 11110} 3
Decoder begins decoding at bit 14 and 8l 71686
continues until it reaces bit @. You

can, therefore, change the data base 91413
at will by setting whichever pixels you 2i11@

desire and recalculating the value of
the 16 bit word. A black box, measuring
3 by 5 pixels, would have the value
32767.

The character set was designed with some human engineering
factors in mind. An attempt was made to keep all characters
different from all other characters by at least two pixels
per character. This was not possible with the characters

H, M and W for obvious reasons. All digits have squared
corners while all alphabetic characters have rounded corners
with the exception of 0 and @, where an attempt was made to
follow Bally's 5 x 7 convention of sgquare Os and round @s.
Don't ask why ... we don't know.

HOW TO USE IT

The 3 x 5 character set may be used in two ways: embedded or
interpretive.

1. Embedded

Use lines 18 and 19 of the Interpreter, (modified to read

"IF A=61 ..." instead of "IF A=-17 ...") and lines 21 through
26 of the Decoder as a subroutine (remember to renumber the
lines depending on where you place it). Now you must set

the following parameters before your GOSUB instruction:

X = horizontal pixel location of upper left pixel of first
character in text (-80 to 76)

Y = vertical pixel location of upper left pixel of first
character in text (43 to -39)

Now send your string using

A = Half-ASCII character to display (9 to 63)

You cannot be currently using the variables A, B, C, D, E, F,
X or Y for any other purpose;, they will not be returned intact.

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 5

Let's suppose you wish to print the words: HI THERE! on the
screen beginning at the center of the screen and have stored
the data base in a * string. The words: HI THERE! must now
be stored. Let's place them in string memory starting at
*(64), the first unused string variable.

Enter the following:

42 (the letter H)

*(64) =
*(65) = 43 (the letter I)
*(66) = 2 (SPACE)

*(67) = 54 (the letter T)
*(68) = 42 (the letter H)
*(69) = 39 (the letter E)
¥(70) = 52 (the letter R)
*(71) = 39 (the letter E)
*(72) = 3 (EXCLAMATION POINT)

The program would now be entered as follows:

1 CLEAR; X = §; Y =0
2 FOR G = 64 TO 72; A = *(G); GOSUB 18; NEXT G
3 STOP

RUN the above program and you will see the 3 x 5 character
generator in operation as the words: HI THERE! appear with
the upper left corner of the H in HI centered at @, 0.

This technique is fine for storing short bits of text like
HI THERE! For long messages, see the section on Text
Storage.

2. Interpretive

Enter the program up through line 26 (you may delete the
comment lines 1, 2, 3, 5, 10 and 20). (See program listing:
Appendix B.) '

RUN the program. It will ask for the beginning X and Y
coordinates at which you want the text to appear. Let's

say you want to start at the upper left corner of the screen.
Enter -89 for X and 43 for Y. It will also ask for G; enter
any number.

Now type in your message on the keypad. Try the entire
character set, especially the control characters ERASE and
GO (carriage return).

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 6

The program is interpreting ASCII into Half-ASCII. Notice
how some characters (the impossible and the "who needs 'em'")
are either ignored or are interpreted as some other
character. The Data Base table will tell you which
characters are supported by this set and which are not.

For an interesting demonstration of how the interpretive

mode converts: ASCII to Half-ASCII and ignores characters it
cannot reproduce in a 3 x 5 pixel form, let's do a partial
program listing in 3 x 5 characters. Yes, it works. Re-enter
the comment lines and add the following lines to the program:

110 FOR G = -24576 to -24276 STEP 2
120 H = %(G) + 256; A = RM; GOSUB 11; A = H; GOSUB 11; NEXT G
130 CY = p; STOP

Delete line 6. Now type RUN, press GO and enter -89 for X;
43 for Y and ¢ for G. Watch what happens. We'll bet you've
never seen that before! We'll also bet you've never seen a
program lisiing like that before either. Where are the
command words like CLEAR, IF and FOR? In the bit bucket,

as we mentioned earlier. Half-ASCII doesn't support them,
so the Interpreter weeds them out and throws them away.

In the above demonstration, the little routine at line 110
is feeding full ASCII codes to the Interpreter which is
selecting the codes it can convert to 3 x 5 characters,
displaying them, and discarding all others. Among the
discards are line numbers which are not decoded fully by the
routine at line 110. Where are the ASCII codes coming from?
They are coming from the FOR-NEXT loop in the routine above
which is PEEKing directly into text memory starting at the
first location: %(-24576). That should give you one idea
of how to store character strings for the 3 x 5 Decoder.
Let's examine some more.

TEXT STORAGE

We said earlier that the 3 x 5 character set consists of four
parts. If you are going to use the 3 x 5 character set to
display ''canned" material such as comments or labels during a
program you must have a way of storing that material. Here are
some suggestions; there are other ways open to your own
imagination.

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 7

1. String Variables

The "HI THERE!" demonstration had you storing the Half-ASCII
codes as string variables using either the * or @ construct.
While it works, it is a very inefficient storage technique.
Each "string" variable requires 16 bits (two bytes) of
memory to store a 6 bit value (@ to 63). We do not
recommend this technique for other than programs requiring
a few short character strings.

2. REM Statements (Interpretive)

You can put longer text strings into REM statements. REM
statements are those that are preceded by a period so that
they are not processed by the BASIC interpreter cartridge.
For example, begin at line 1:

1. I AM A REM STATEMENT. THE BASIC INTERPRETER DOESN'T
KNOW I'M HERE.

2. HOW CLEVER OF YOU TO FIND ME.

We must now tell the 3 x 5 Interpreter to ignore the first
period (same one the BASIC Interpreter ignores) but to print
all periods thereafter. Let's just avoid sending it at all.
Notice that the first character after the first period is

a SPACE. It takes two characters to fill each memory

location, and memory locations progress by twos. For practical
purposes (not real purposes; this isn't a tutorial on Arcade
memory allocation!) let's pretend that each character occupies
one memory location (one byte) but that we are forced to count
them by twos, okay? The line number hogs two memory locations.
Since it is line number 1 it hogs locations %(-24576) and
%(-24575). Let's pretend the period hogs location %(-24574)
and the space is in location %(-24573). That means that the
"I" of "I AM A REM STATEMENT" is in location %(-24572). It
isn't really, but I haven't the time to explain why it isn't
and where it really is, and you haven't time to read it. Nor
do you care. If you pretend it IS in %(-24572) the program
will work as if it really is there. Now, I count 66 characters
in line 1, so if we pretend that each character (including
spaces and punctuation) takes one memory location, that means
that the word "...HERE." ends at memory location %(-24506).

Change line 110 of the previous routine to read:

110 FOR G = -24572 TO -24506 STEP 2

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 8

Type RUN, hit GO, enter X, Y and @ for G and watch what
happens. Pretty neat, huh? It works!

Now, how about line 2? We left off at %(-24506). Let's
assume that the line number 2 hogs locations %(-24505) and
%(-24504). The period and space occupy %(-24503) and
%(-24502). That puts us at %(-24501) for the "H" in "HOW...".
There are 29 characters in line 2. Change line 110 to read:

119 FOR G = -24501 TO -24472 STEP 2

Type RUN, hit GO, enter X, Y and P for G and there you are!
Contratulations, you've done it again and you now know a more
efficient way to store text strings for the 3 x 5 character
generator. How much more efficient? Well, each character
now takes only 8 bits (one byte) of memory to store. It's

a significant improvement. Remember to insert a SPACE after
the first period.

You can stop here if you want to. We didn't, of course.

It really kept us awake nights knowing that we were still
wasting two bits per byte (25% of memory) and that we could
do better still. What we are about to tackle now is the
reorganization of the Arcade's memory, a super-sophisticated
technique called "high-density packing" that allows us to
store more than 1800 characters in 1800 bytes of memory.

3. High Density Packing

The Arcade is presently configured into what we will call
"memory cells". Each cell is two bytes in size. You know
memory cells by their commands: %, * and @. Storing a Half-
ASCII character in a POKE, STAR STRING or EACH STRING looks
like this:

[7 [] /] [[/] [[57/47/3 /2 /1 /8 /

We have learned that we can also store Half-ASCII strings in
text memory as ASCII strings. ASCII strings require seven

bits and must be interpreted. You could bypass the 3 x 5
Interpreter if you could generate the non-printing ASCII

commands (§ through 31) from the Arcade keyboard. Unfortunately,
you cannot. Storing text strings as REM statements looks

like this:

/7675 JA 3 72 JL 1P 1 76 75 72 73 72 1 78]

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 9

We are wasting four bits out of the 16. Bit 6 is unneeded
and requires the Interpreter program to sort through it.
If we scrap bit 6 and write in straight Half-ASCII we are
giving the Decoder everything it needs but still wasting

4 bits out of every memory cell of 16. That's 25% waste.
It should be obvious that one way to approach this problem
is as follows:

/5 /4 /3 /2 /1 /@ /5 /4 /3 /2 /1 /9 /5 /4 /3 /2 /

That's horizontal dense packing. Unfortunately, it ends in
the middle of a character. We need three memory cells
(six bytes) to come out even:

[5 /4 /3 /2 /1 /@ /5 /4 /3 /2 /1 /9 /5 /4 /3 /2 [
/1 /9 /5 /4 /3 /2 /1 /@ /S5 /4 /3 /2 /1 /D /5 /4 /
/3 /2 /1 /9 /5 /4 /3 /2 /1 /@ /S /4 /3 /2 /1 /@ /

But look what we've done! We've packed 8 characters into

6 bytes! The Arcade offers 1800 bytes of memory. If we
can get 8 for 6 we can store 2400 characters in that 1800
bytes. Wow! Binary Magic! We have Jjust done the
impossible: we have displayed more than 1800 characters in
less than 1800 bytes!

Well, we haven't done it yet. We must first look at the
problem of reconfiguring the memory and weigh some trade-offs.
There are two possibilities: horizontal packing and vertical
packing. The example last given was of horizontal packing.
Each character follows each other character with the character
boundaries breaking evenly every three memory cells or six
bytes. Here's where the sign bit (remember bit 15, the one
we've been ignoring so far?) rears its ugly head. If we use
high-density packing we must use the sign bit. The sign bit
is not easily read. We cannot, for example, start the value
of B in line 21 at 32768, the sign bit's actual value, because
the Arcade doesn't have a 32768 ... it has a sign bit. The
sign bit must be written by setting a memory cell to a
negative, and read by determining whether a memory cell is
less than @. Writing horizontally would require a lot of
calculating to determine which cell we're in of the group of
three and when we've changed from one to the next so we can,
if necessary, change the previous cell to a negative value.
Who needs it? Let's forget horizontal packing and try
vertical. ‘

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 10

Vertical packing works with groups of six memory cells
instead of three and uses twelve bytes. It will store
sixteen characters and looks like this:

ADD-
RESS | BIT NUMBER VALUE
*(64) /D /P /O /9 /D /O /D /D /D /D /D /D /D /D /D /P]/ 32
%(65) [T JL /1 /1 /i /1 /1 J1 /1 J1J1/1i/1 /1 /1 /1 /) 16
*%(66) [2]2 J2]2 j2 J2 J2 J2]2 J2]2 j2 J2 j2 j2]2 / 8
*(67) /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 /3 / 4
*(68) /(4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4) 2
*(69) /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /B /5 / 1
+ 1 8 4 2 1 5 2 1 6 3 1 8 4 2 1

6 1 01 0 1 5 2 4 2 6

3 9 9 4 2 2 6 8

8 2 6 8 4

4

The text must be stored in blocks of 16 characters each.

If you wish to.display more than 16 characters {like an
entire letter to your girlfriend of 1500 characters or so!)
you must set up a FOR-NEXT loop that starts G at 64 and keeps
stepping it by 6 until your text is done, 16 characters at a
time.

Delete lines 1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16,
17, 20, 100, 110, 120, 130 and 190. (We hope you never
bothered entering lines 30 through 90 and 140 through 180;
they're just there to make the printer space the program out
on the page!) '

Change line 18 to read "IF A = 61 ..." instead of "IF A= -17...".

Now you need a message to decode. We've given you a sample
coding form as APPENDIX C, with the first block already filled
in and the values for the first block written in the second
block. The binary numbers from @ to 63 are entered vertically
beginning at the left. When all 16 columns are filled, the
numbers are read horizontally and entered into six consecutive
memory cells. We suggest you use *(64) through *(69) for the
example. Enter the six numbers shown into those memory
locations, then type RUN, hit GO and enter -80 for X, 43 for

Y and 64 for G. The 64 means that text starts in memory cell
64. (If you want to do 16 more characters, the next block
would start in *(70) and go to *(75), etc., etc.)

HOOVER-ANDERSON RESEARCH AND DESIGN

3 x 5 Character Set Page 11

There, see? The six numbers you entered produced 16
alphanumeric characters. You just can't pack discrete
English text any tighter than that.

As for codes, try sending those six digits to the CIA
we'll bet it keeps 'em up for a few nights!

We're sure that anyone intending to use this technique for
long text-based programs will consider doing two things:

1. Write a program for -generating high-density text blocks.
(Just use the one at line 200 backwards.)

2. DPut the Decoder into machine language for speed.

Best of luck! We expect to see some inventive programs using
mixed type fonts appearing soon.

3 x 5 CHARACTER SET DATA BASE

APPENDIX A

HALF
ASCIT CHAR-

CODE ACTER DATA

P NULL * P-NO ADVANCE
1 ERASE P-DECREMENT
2 SPACE P-INCREMENT
3 ! 9346

4 " 23040

5 * 26918

6 1) * 11922

7 % 17057

8] * 12875

9 ' 10240 (apos)
10 (10530

11) 8778

12 * 21845

13 + 1488

14 R 20 (comma)
15 - 448

16 2

17 / 672

18 p 11114

19 11415

20 2 25255

21 3 29647

* These eight characters must be interpreted by the decoder program.
are equal to standard ASCII code minus 30.

HOOVER-ANDERSON RESEARCH AND DESIGN

HALF
ASCII CHAR-
CODE_ ACTER
22 4
23 5
24 6
25 7
26 8
27 9
28

29 :
30 <
31 =
32 >
33 ?
34 \
35 A
36 B
37 C
38 D
39 E
40 F
41 G
42 H
43 I

DATA

23497
31118
27119
29348
31727
31691
1040

1044

5393

3640

17492
25218
* 9402
11245
27566
14627
27502
31143
31140
14699
23533
9362

HALF
ASCII CHAR-
CODE ACTER DATA
44 J 4714
45 K 23861
46 L 18727
47 M 24429
48 N 27501
49 0 31599
50 P 27556
51 Q 11131
52 R 27565
53 S 14798
54 T 29842
55 U 23407
56 v 23402
57 W 23421
58 X 23213
59 Y 23186
60 z 29351
61 CARRIAGE
RETURN *0

62 X * 2728 (mult)
63 = * 8642

A1l others

APPENDIX B

1 3 BY 5 CHARACTER GENERRTOR

2 .BY C.J RNDERSON / HOOVER-RNDERSON RESERRCH AND DESIGN

S . SET START COORD: X, ¥=UPFER LEFT FIXEL OF 1ST CHAR. G=HI-DENSITY *() START
4 INPUT X, ¥.G: CLEAR ' .
S . KEYBORRD INFUT ROUTINE. DELETE FOk EMBEDDED APFLICATIONS.
6 A=KP;GOSUE 1. G070 €
7 GOTO 186; [LISTING ROUTINEI -
8 GOTO 206, THIGH-DENSITY PRCKING DEMGOJ

16 . INTERFRETER FOR EIGHT NONSTANDRRD CHAKACTERS

11 R=R-38;IF A=1X=X-4

12 IF A=61R=5

13 IF A=64A=¢

14 IF A=€3R=8 NOTE
15 IF R=6E6AR=34 Lower-case ¢ = =
16 IF R=68A=62 Lower-case b = x

17 IF A=E9A=63 .
18 IF R=-17N=-60; ¥=vY-6; A=
19 IF (AC1Y+CA>EIIRETURN
28 . DATH BASE DECODER AND DISFLAY ROUTINE
21 B=16384; F=%(R) |
22 FOR C=Y¥TQ Y-4STEP -1;FOR D=XTO X+2;E=FcE
23 F=RM:B=Bc2:BOX D.C, 1,1, E+2
24 NEXT D; NEXT Ci X=X+C4b(A>1))
25 IF X=86X=-80: Y=Y-£
26 RETURN
36 .
46
50 .
60 .
70
86 .
98 .
188 . LISTING ROUTINE
118 FOR G=-24576T0 -24276STEP 2
120 H=%(G)c256; A=RM: GOSUE 1@: A=H: GOSUB 18; NEXT G
126 Cy=8:STOP
140
156 .
166 .
176 .
186 .
198 HIGH-DENSITY (& BIT) PRCKING DECODER
200 1=16354; FOR H=ATO 15
261 J=32:R=0:FOF K=GTO G+5
202 IF H=8R=A+(*(K)<BIDJ; B(K-GI=ABSC*(K))
263 IF H R=A+6(K-G)cIbJ; 8CK-G)=RM
264 J=Jc2, NEXT KiGOSUE 18
265 IF H I=Ic2 |
286 NENT H

HOOVER-ANDERSON RESEARCH AND DESIGN

0]810

8101916

0191013

116141516
214
<

144161319

':t”lsxrzt([#!lem [s:zlzss[mlalazl |8 |4 izl i l

32

le

32
16

32

Ie

32

32

1

APPENDIX €

1

(2 | r| x| 4kcfax|ik [sizfose 8|64 (32 | 46 | @ |4 {2] I

HOOVER-ANDERSON RESEARCH AND DESIGN

ol 1Jol ofol ofole

1{ojol1l1f1]1]R

1111

1{0j0o jo[0j1] 0jO]| O|O |4 |.

1

1

ifalalalifalalalalatololRf-13l2]7]6]4

1

1

110} C}110 O] 110} 11

1

1

1

olo]olol ololo!l1!olo] 1]lol olo]8

Ol1

1{1j0j1j0j011

1

1
0101 01

1
1
1

0
1
0

110

