
Plain BASIC Talk
Stack Woes: When things are STACKed against you!
By Ken Lill
July 24, 2021
Version 1.1

The "Plain BASIC Talk" series, written by Ken Lill, originally appeared in
1982, 1983 and 1985 in the "Arcadian" newsletter fo r the Bally
Arcade/Artocade. This new article was written in 2 021.

If you are newish to BASIC programming with the eit her the Bally or Astrocade
BASIC cartridges, there are a couple of things you will need to know about
the STACK.
 The STACK is a dedicated part of memory that is us ed by both the BASIC
program and the
Z-80 microprocessor.
 They are in different places, but they are used qu ite similarly.
I won't get into the Z-80 STACK because it involves machine language.
 But, in BASIC, it can be a GAME CHANGER!!
 If you happen to make it overflow, it WILL crash y our entire program and
may even erase all of it from memory in a FLASH!
 There are 2 commands that you will need to watch o ut for mainly. They
are GOSUB and the
FOR-TO-NEXT-STEP loop.

Let me explain why these can be bad and how to prev ent them from crashing
your program.

GOSUB means to go to the line that is numbered afte r this command and execute
the program from there until there is a RETURN comm and. When the RETURN is
found, clear the stack of the information it uses t o find out where to go
back to.

Example:

10 gosub 20;goto 50
20 for a =0to 20
30 next a
40 return

The program is executing line 10. It sees that a GO SUB is being asked for. It
saves the next 2 bytes on the STACK, which have the address in the program
that it must return to when the RETURN is found. Th en it jumps to the line 20
and starts doing what that line says. It goes thro ugh the loop and then
finds the RETURN. It then jumps back and resets the STACK pointer, which is
where the STACK goes to find its next position. The stack pointer is now
cleared of the information it stored and can contin ue working.

However, if you do this:

10 gosub 20;goto 50
20 for A=0to 20
30 next A;goto 10
40 return

it will NEVER get to the return but will continuall y add the return point to
the stack. It will do this until it overflows and d oesn't know where to
go...CRASH!!

This will take some time to fill up the STACK.

But when you mess up on a FOR-TO-NEXT-STEP loop, th at's a different story!

In line 20 above there is a proper loop. Let's see just what happens.

First, the loop is recognized by the program, so it needs to set up the
STACK.
It saves the A variable's address. Let's just say i t is located @ 20220. That
takes up 2 bytes of the STACK space. It sees that t he first number in the
loop is 0. It puts that number into address 20220. Then it needs to save the
value after the TO command. That takes up 2 more by tes. Then it looks to see
what the STEP value is. If it is not assigned by th e programmer, it sets it
to 1 automatically. Another 2 bytes. It then must s et up where the address is
after that, so it knows where to come to when it en counters the NEXT command.
2 MORE bytes. So in total, it needs to save 8 bytes on the STACK.

Now let's see how this can be dangerous to your pro gram really quick.

Let's change the program above:

10 gosub 20;goto 50
20 for A=0to 20;goto 10
30 next A
40 return

First off, it saves the 2 bytes for the GOSUB, it g oes to line 20; it saves
the 8 bytes for the loop, and then goes back to lin e 10 and does it all over
again. Now the STACK will crash 5 times faster!

However, if you go back to the first program, it sa ves the 2 for the gosub,
then the 8 for the loop, but it resets the STACK p ointer for the loop when
it encounters A has gotten to 21 and it goes back to the start of 8 bytes it
was using, goes on to the next command. That is the RETURN. It gets the
address after the GOSUB 20 and resets the STACK POI NTER back 2 bytes. The
Stack is now where it needs to be for it to continu e on with the program...
GOTO 50.

Also, be cautious about nesting a loop inside anoth er loop.

I know this is a lot to chew on, but as you get fur ther on down the line, it
will all make sense to you.

10 gosub 20;goto 50
20 for A=0to 20;for B=1to 10; print “HI
30 next b; next A
40 return

What this does is start loop A, then starts loop B; does the printing, goes
to the next B, finishes the 9 other printings. Then it goes onto loop A and
increments A, prints the 10 lines, and continues un til A is 21. It RETURNS
and then GOTO 50.

IF you get this wrong, thinking that A was first, s o it's NEXT should be
first....

30 next A; next B

This will be an endless loop. It will do loop A, sa ve the 8 bytes for the B
loop, Print “HI” once, then go back until A is sati sfied, and tries to do
loop B once, and goes through all of this again, ne ver clearing the STACK of
the B information.

If you have any questions, please feel free to ask. My email is
kenzre@yahoo.com
Make SURE that you put into the subject line that i t's a question about
BASIC.

