(©) 1980 Byte Publications
page 1 Tom DeFanti, UICC Box u348, Chicago IL 60680

Language Control Structures for
Easy Electronic Visualization

Tom DeFanti
University of Illinois at Chicago Circie
Box 4348 Chicago IL 60680

Perhaps the test way to start this article is to explain the
title. Control structures are the program flow and manipulation
features of the language that you use to beat your computer into
submission. BASIC's control structures are embodied in the RUN,
GOTO, GOSUB, RETURN, DATA, INPUT and READ commands, an impover-
ished set, tc be sure. Highly structured languages like PASCAL
are rigidly limited to the control structure of subroutines.
Lowly structured approaches 1like assembler language coding are
necessary to implement higher-level languages and real-time sys-
tems because the lack of enforced structure allows an infinite
varjety of control structures to be used (at a cost of great hu-
man effort). The execution speed gain in using assembler is more
due to the efficient building of customized tables and 1linked
lists than adding, subtracting, multiplying and dividing numbers.

Assembler coding is by no means easy, though, and the title
does contain that word. 1In fact, it's the most important word jin
the. title because "easy " ip peality, means ‘access." In this
case, it's your access fo zomplex w{duals.in short order. o

Why does this article concentrate on visuals? Because pro-
ducing and manipulating images, especially animated ones, is a
truly multi-dimensional task which reflects our real-world in-
teractions much more than maintaining an accurate laundry list or
printing payroll checks. Producing visuals demands a 1lot from
software and making the access easy requires paying attention to
providing rich control structures in a language.

"Electronic Visualization" is an intentionally broad term
meant to conjure up thoughts of computer graphics, animation, im-
age processing, video synthesis and even advanced word process-
ing. Anyone sucessfully producing images for communication is
unlikely to reject a techinque for reasons of algorithmic purity
(as a computer scientist might feel forced to). One uses the
tools at hand, and electronic visualization is the act and end
product of using these tools. It can be both simultaneously be-
cause we are seeing the vast increase of real-time imaging sys-
tems, even in micro-based configurations. And controlling these
real-time systems is like playing a musical instrument or driving

a race car.
Just to tie the whole concept together, think about this

question: what besides the cosmetic packaging governs our choice
of a musical instrument or an automobile? It is a combination of
capability and user control, of course. One without the other is
unacceptable to the thinking person. So why are programming
languages currently available so impoverished on the control
structure side?

Perhaps it is because computers were invented to process
payrolls, not images. Television, on the other hand, is image-
oriented and currently uses a host of newly emerging real-time
digital techniques and increasingly flexible control structures.
As a matter of fact, just about all the TV you see these days is

page 2 Tom DeFanti, UICC Box 4348, Chicago IL 60680

digitally processed for synchronization purposes.

Television is a high-speed medium conducive to parallel and
pipeline processing. You are driving TV rather than generating
it. TV cameras are on all the time and you, as director, are
fading, switching, adding titles and constantly throwing away
stuff you don't want. "Control™ is the name of the game in TV.

The television folk are not about to give up rich, real-time
control structures and the computer folk won't give up language.
How to get them together is the essence of this article.

Getting Computers and TV Technology Together

Let's look at the history of control structures for computer
graphics and for television. Most computer graphics usage, with
the obvious and exciting exception of TV games, is some variety
of non-real-time plotting. This is where the money is and where
the language development for computer-aided design has focused.
No manufacturer of equipment for computer graphics (excepting the
video game people, again) now depends on animation for solvency.
Plotting is slow and often merely the side output of a large FOR-
"TRAN finite element analysis program. Visual esthetics are rare-
ly the primary concern, if any concern at all. People who use
such systems are highly-skilled and highly-pzid technicians who
became that way by having to deal with plotting packages as a
condition of employment. If it were easy, they wouldn't get paid
so much. . !

We abe just recently to the point of electronically generat-
ing and manipulating images in redl-time under program control.
How do we design languages to deal with real time? But first,
why do we want language, particularly alpha-numeric string-
oriented language? Why not use picture-based languages with sym-
bols feor motions and timing?

How Can You Control Images Easily?

After about ten years of living with this obvious, nagging
question, some conclusions became clear. First, purist ap-
proaches to electronic visualization are hopeless. You need a
hybrid combination of language, several input devices, picture-
oriented commands, custom hardware and a smattering of idiosyn-
crasies. The most successful approaches to date are basically
highly developed, beautifully evolved kludges. We know what pur-
ism in FORTRAN and BASIC does to image production. Purism in TV
technique eliminates computer graphics as we know it. How about
using graphic symbols to save the day?

Using symbols in a menu and some sort of manual picking
mechanism is an approach taken by many FORTRAN graphic systems.
This limits you to the number of symbols predefined in the menu
and there 1s no wuser-level extensibility in that you cannot
create new symbols to use out of sequences of old symbols, which
eliminates the one truly unique feature of computers. To state
it bluntly, you can't program with a menu.

Wnat happens, however, if you do find a system that provides
combination of non-alphanumeric symbols in meaningful ways? 1In
an exiremely advanced case, it should 1look something 1like
Japanese, and you might note that the language used to program in
Japan is a phonetic alphanumeric transcription of their language.
They do not program in their extremely beautiful and rich symbol
set. Eliminating alpha-numeric languages is not such z hot idea,

page 3 Tom DeFanti, UICC Box 4348, Chicago IL 60680

except in wholly turnkey systems.

The second conclusion gestating for the past ten years is
that complete parallelism is necessary for controlling images in
meaningful ways. You simply have to be able tc develop sequences
independently and merge them in ways that do not necessitate
rewriting the programs. SMALLTALK and certain other languages
have this capability, as do television technology and everyday
life. How to make this parallelism easily accessible takes real
care.,

The third conclusion is that a flexible priority scheme is
needed. Some tasks are more important than others, just like in
real life and computer operating systems. It 1is essential to
give this capability to the user of an electronic visualization
system.

Fourth, providing for user extensibility at several levels
is the only way people will easily be able to use a system for
applications not envisioned by the designer. We'll get further
into this later.

Fifth, the system must be software fault-tolerant. Fault-
tolerant hardware has been an active area of research of great
importance to real-time control systems, yet language purists
still think people should solve problems in structured, orthodox,
algorithmic ways. A language should provide as many paths to a
given communication as possible, as natural langugges do, and the
kind of error handling that a friend would offer. Allowing non-
structured, non-procedural, seat-of-the-pants programming is
often the only salvation when the final goél is esthetically de-
fined, and maybe not at all clear. You might call it "fuzzy pro-
gramming." It's easy to throw in the recursive, value-returning,
clever structured programming capabilities as well, but limiting
yourself to these latter approaches stifles human creativity,
problem solving and sideways thinking.

Zgrass--A Language for Easy Electronic Visualization

Zgrass is a programming language and operating system writ-
ten in Z-80 assembler by myself, Nola Donato and Jay Fenton. It
embodies, not surprisingly, all the control structures put forth
so far in this article. It has been in development for ten
years.

Zgrass started out as the Graphics Symbiosis System (GRASS),
a2 language designed to bring the immense complexity of a PDP=-
11/45--Vector General 3DR Display System within the grasp of ar-
tists and educators at The Ohio State University. It has high
levels of interaction, parallelism, priority, and tree-structured
manipulations of vector-defined objects. Photos from this system
can be seen in the October 1977 issue of Byte.

GRASS depends on $120,000.00 of egquipment to run, kind of
expensive for a single-user system. But it is one of the first
highly-developed non-FORTRAN interactive graphics systems for use
by artists.

In 1973, Dan Sandin, inventor of the Image Processor,
brought color TV into our computer graphics at the University of
Illinois at Chicago Circle. Together, Dan and I developed most
of the ideas about control structures presented here.

Generating a complete programming 1language with parsers,

@]
to
8]
8¢
[
(V%)
e
[0.8]
O
ja 3
-
(&
o))
i3]
(8]
+
r
[en)
()
O»
(65
[&]

page L Tom DeFanti, UIC

compilers, and graphics takes a lot of human effort. Easily ten
person-years of programming were devoted to GRASS aided by gen-
erous support from the National Science Foundation, National En-
dowment of the Arts, and others.

GRASS is totally oriented toward real-time generation and
control of images for the simple reason that TV cannot easily be
siowed down for time-lapse and time-exposure as film can. The
control structures for GRASS were developed ad ho¢ and became in-
creasingly idiosyncratic. Nola Donato, a Master's student of
mine, .decided to teach me how to generalize many of the program-
ing language concepts. The result was GRASS3 which later became
Zgrass.

In 1977, I was told that Jeff Frederiksen at Dave Nutting
hssociztes was developing a deluxe home computer for Bally Cor-
poration using the chipset they had developed for the Bally Ar-
cade. The prospect of developing a language for fun, one that
had user-orientation as the benchmark rather than how many FOR-
NEXT 1loeps you could execute per unit time was too good to pass
up. I contracted tc produce Zgrass, and in a year, Nola Donato,
Jay Fenton (a legendary wizard of videogames and pinball machine
operating systems), and I had generated 9,000 lines of code, much
of it 1in a cabin in the woods of Wisconsin. Examples of output
from this system are seen in photos 1-5. Note the resolution of
this first Zgrass machine is 160x102x2 bits/pixel.

Photo 1 and 2: Zgrass for producing images. Graphics by Copper
Giloth.

page 5 Tom DeFanti, UICC Box 4348, Chicaro IL 60680

Photo 3: Using parallelism to show shell sorts beat bubble sorts.
Program and graphics by Nola Donato.

Photos 4 and 5: Example of a hand-drawn image wusing a joystick
and the duplication of one element by the "snap"/"display" com-
mand sequence. Graphics and programming by Copper Giloth.

Some confusion arose as to whether we were producing a hobby-~
ist machine or a home computer for consumers, so the project was

page b Tom DeFanti, UICC Box 4348, Chicago IL 60680

suspended. To this date, nobody really Kknows what & consumer
machine is supposed to be.

From consulting with less enlightened would-be consumer com-
puter corporations, I have perceived a rather negative view of
comsumerism (few people reading this article would be considered
consumers--you are mostly hobbyists or professionals). Consumer-
ism is based on great market benetration, and the big question is
how do you get 90% market penetration like color TV? Consumerism
is based on consuming, that is, wearing out or getting sick of
hardware and software so you go buy more and consume it. The
user is expected to supply no creativity, just assume a passive,
succeptive-to-entertainment pose. Sounds like TV, doesn't it?
Anything requiring creative energy is hobbyism.

Consumer computers do exist in the form of video games that
you can get bored with and buy more--even the ads invariably cite
the number of new games to be available each month.

I don't know how to write a programming language that wears
out, though. User-extensibility is planned un-obsolescence.
Zgrass is not a consumer language by current standards.

The project is on active status again, but this time with a
hobbyist/professional orientation. We believe there is a goodly
number of people who want a recordable image producing system for
around $3,000.00. 1It's current configuration looks like:

1. Z-80 processor with 16K EPROM, U4BK RAM
Custom graphics chip and floating point hardware
Dual UART for connection to larger computers, printers, etc.
RBG monitor for best color resolution
Alphanumeric terminal (which you provide)
. Erovision for floppy disks, tablet, other 10 devices

U =W

Eight Zgrass units in this configuration have been alive and
well and tied into UNIX (TM-Bell Labs) since January 1980.
Although this is an article on scoftware design, the hardware to
test the concepts really exists! See photos 6-8 and note the
resolution is now 320x204x2 bits/pixel.

page 7 Tom DeFanti, UICC Box 4348, Chicago IL 60680

Photos 6 and 7: Two images by Frank Dietrich from the 320x204x2
bits/pixel Zgrass units. ,

!-z:‘
=
g‘

Photo 8: Image from a promotional campaign for Carson Pirie
Scott, & Co., a Chicago retailer. Image and programming by
Copper Giloth.

Zgrass Control Structures in Detail
Programs in Zgrass are called "macros." Macros are stored
as ASCII strings and are in no way different from strings of
characters except that they normally contain executable Zgrass
commands. The fundamental unit of execution in Zgrass is a com-
mand, which is either an assignment statement or a function call.

page 8 Tom DeFanti, UICC Box 4348, Chicago IL 60680

The built-in commands are given at the end of this article.
Zgrass does not have declare statements for variable types

(with the exception of array dimensioning). The software au-

tomatically does all conversions that make sense based on the

context. Any argument to anything can be a function call whose
returned value is converted to whatever is needed, if at all pos-
sible. Literals, indirect references, variables, built-in com-

mands, user-defined commands and user-defined macros are all han-
dled by the same parser so the syntax is very predictable. Add
the fact that there are no restrictions on name length and you
get rather readable code in general.

User-level Extensibility

Extensibility in Zgrass 1is achieved in two major ways.
First, you can write macros which return values, produce graph-
ics, ask questions, or, through string manipulation primitives
written by Barb Wilson, generate other macros. Macros use argu-
ments in exactly the same way as system commands, and are even
named and called like system commands.

Macros, again, are simply strings of ASCII characters. When
a macro is called, a Macro Invocation Block (MIB) is automaticale
ly built. It gives information on the caller, the passed argu-
ment list, pointers to local variables, and provides room for the
returned value. Macro Invocation Blocks form a stack which im-
plements the subroutining and block structuring of the language.
When the macro returns, the Macro Invocation Block is deleted
along with the local variables and unused literal arguments, if
any, and control is passed back to the caller.

If arguments are to be passed to a macro, they are read by
the normal input command, and print statements are suppressed as
long as there are arguments left. If no arguments are present or
an insufficient number are passed, the print statements function
normally and the macro starts asking for input from the terminal.
This allows macros to be used whether or not you know the argu-
ments wanted, with no extra code by the author of the macro.

Macros can also be executed in parallel as background jobs.
When called and suffixed by a ".B", the Macro Invocation Block is
added to a background linked list. After that, the macro will
run forever (it restarts at the beginning when it tries to re-
turn) until Control-C or the stop command selectively kills it.
Photo 2 shows two types of sorts being compared for execution
speed in real-time, a tricky task in most languages, easy in
Zgrass,

The background parallelism is achieved by interleaving the
macro statements. The Macro Invocation Block has all relevant
context for execution including a pointer to the next command to
execute, so switching MIB's after each line is complete is simple
and gives the funtional parallelism. If there are five back-
ground macros, each one gets a line executed, in turn, round-
robin fashion. This construct is simple and straightforward with
no bizarre side-effects except that unusuallv time-consuming com-
mands will make the parallelism temporally step somewhat. Back~
ground interleaving is easily understood and used even by the
most naive users.

Meanwhile, the keyboard is still active, and anytime the
user types a command line, it is slipped in and executed at a
higher priority than the background macros. If the wuser ini-

page 9 Tom DeFanti, UICC Box 4348, Chicago IL 60680

tiates a macro at keyboard level, it will finish before the back-
ground macros continue. In any event, the keyboard overides the
background, again in an obvious, predictable way.

The user may also specify programs to run as the result of a
clock interrupt. When a macro call is suffixed by a ".F", the
Macro Invocation Block is chained into a 1list that 1is polled
every 1/60 second. The user sets the frequency of execution at
one to 64K sixtieths of a second. These foreground macros exe-
cute on a higher priority level than the keyboard and background
macros so they will startup pretty much on time (again, delayed
only by a time-consuming graphics command). Foreground macros al-
low a keyboard command to be slipped in during context switching
between themselves.

Zgrass, then, has three effective levels of priority with
parallelism at two of the three levels. Since the Macro Invoca-
tion Block maintains all context information, even recursive pro=-
gramming is possible at any level.

One of the severe problems in interpretive extensible
languages like Zgrass is the overhead of parsing and looking up
names in names tables. For this reason, Zgrass has a compiler
which eliminates the overhead and dramatically increases speed.
411 the automatic conversions, priority and parallelism continue
to work. Compiling does eliminate some of the interactive debug-
ging features so you usually debug on the non-compiled versidn
first.

Zgrass System Extensibility

Zgrass also allows extensibility at the system command lev=-
el. A system such as this should allow an experienced programmer
to write new commands in assembler and interface them to the sys-
tem easily, certainly without changing the EPROM's. A transfer
vector in low memory and a series of Z-80 RST instructions allow
communication with about one hundred system routines which do
parsing, type conversion, primitive graphics, and so on. Docu~-
mentation explains what these routines do and anyone with a cross
assembler (or patience for hand assembly) can write new commands
of which the system has no prior knowledge. Such extensibility
allows virtually infinite variety of specialty graphics commands,
device drivers, and whatnot to be written and distributed to oth-
ers on audio tape, disk, or over phone lines. Terry Disz wrote a
debugger (itself a disk-resident command) for setting break-
points, dumping memory and registers and so on. This capability
is not for everyone, but it's there.

The maximum size of one of these user-written non-resident
commands is UK bytes. Since the typical Zgrass machine has 30K
of user RAM, the amount of potential custom code is immense. All
housekeeping for storage allocation and deletion, maintenance of
temporary scratch areas and general cleanup is done for you by
system routines. You only concentrate on the details, obeying a
few rules for writing position-independent code.

One further type of extensibility is easy to get at. Zgrass
has an extra UART which talks to other computers quite nicely.
Larger computers can send graphics and character data to your
Zgrass machine. Zgrass units can even talk to one another at up
to 19.2K bits per second!

Error Handling, Debugging and Automated Instruction

age 10 Tom DeFanti, UICC Box 4348, Chicago IL 60680

Zgrass was designed from the beginning to be a language for
writing computerZassisted instruction (CAI) programs. In partic=-
ular, it was designed to teach itself to a fairly high degree.

In Zgrass as CAI machine, the student always has the power of
the whole language to explore yet the author of the CAI programs
is also in control, the result of providing parallelism, string
manipulation and good error handling.

Since macros are strings, they can be built and executed.
You can take student input, make it into a program (before the
student even knows how to edit), le¢ parameters be changed, show
the results, and verify certain classes of results both during
execution and after. The approaches we have taken to Zgrass CAI
are an article in itself, so let's just mention the system
features which make CAI possible. '

Errors normally generate error message numbers on the termi-
nal. There are about sixty of them and they are quite specific.
During regular programming, they are used in conjunction with
single stepping, variable printing and other debugging techniques
to identify problems.

When teaching, however, the CAI program must trap errors.
These fall into three types: syntax, non-termination, and logic.

To trap syntax errors, you use the "onerror" command which
transfers the control to a diagnostic section of the program that
you, as CAI author, have provided. There you can get the error
number, the argument in error and even the entire ASCII text gf
the line in error with the "geterror" command. You can then ex-
plain the problem in whatever level of detail you wish.

Infinite loops are caught with the "loopmax" command which
sets a limit to the number of control transfers (skips and
gotos). Once the limit is exceeded, an error is generated and
trapped as above. So, you can catch non-terminating programs or
be real picky and require efficiency from advanced students by
lowering the loopmax appropriately.

Logic errors are trickier and, in the general case, impossi-
ble to decipher. However, if you choose suitable problems to
solve, you can do some very nice verification. For graphic
tasks, the "cmpara" command can check a student's building of an
image against a prototype. The CAI author can tell if the
student's image 1is a proper subset of the prototype and let it
continue. Once a stray pixel is written, cmpara returns a value
of -2 which means the image is "mixed up," and you inform the
student immediately. This approach clearly falls short of
genuine artificial intelligence but it is nevertheless quite use-
ful. Several classes at the University of Illinois at Chicago
Circle have been taught using a GRASS-coded prototype (called
GAIN, by Tom Towle), with great success.

Conclusions
Zgrass is a language/system designed to provide easy access
to computer graphics, and computing in general. It has sophisti-
cated real-time structures and control capability, is friendly,
extensible and fun. It's better than BASIC, more user-oriented
than FORTRAN or PASCAL and it's one good way to control what ap-
pears on your television set.

page 11 Tom DeFanti, UICC Box #4348, Chicago IL 60680

Glossary of Zgrass Commands

ANYARGS
SYNTAX: ANYARGS()
(esoteric)
Function which returns 0 if no arguments are left in argument list
and returns 1 if there are arguments in the argument list.
EXAMPLE:
ADDEMUP: [SUM=0

IF ANYARGS()==1,INPUT A;SUM=SUM+A;SK 0
PRINT SUM]

ARCCOS

SYNTAX: ARCCOS(NUMBER)

Function which returns the inverse cosine of the number.

ARCSIN
SYNTAX: ARCSIN(NUMBER)

Function which returns the inverse sine of the number.

ARCTAN
SYNTAX: ARCTAN(NUMBER)

Function which returns the inverse tangent of the number.

ARRAY.INT
SYNTAX: ARRAY.INT NAME, NUMBER
Creates an integer array with elements called NAME(O),NAME(1),
., NAME (NUMBER-1). If two NUMBERS are specified, a two-
dimensional array is created. Similarly, three NUMBERs will
create a three-dimensional array.
EXAMPLE:

ARRAY.INT NEWARAY 8,8 will create a 81 element array
of § rows and 9 columns.

ARRAY NAME

SYNTAX: ARRAY NAME,NUMBER

page 12 Tom DeFanti, UICC Box 4348, Chicago IL 60680

Creates a floating point array of elements called NAME(O) ,NAME(1),...,
NAME(NUMBER-1). 1If two NUMBERs are specified, a two-dimensional

array is created. Similarly, three NUMBERs will create a
three-dimensional array. .

EXAMPLE: p
ARRAY CHECKERBOARD 7,7 will create a 64-element array
with 8 rows and 8 columns.

ARRAY.STRING
SYNTAX: ARRAY.STRING NAME, NUMBER

(You cannot PUTUNIX string arrays as yet)

Creates a string array with string elements NAME(Q),NAME(1),....,
NAME(NUMBER-1). Multidimensional arrays are also possible with
ARRAY.STRING.

EXAMPLE: ARRAY.STRING SEMANTICS, 10

BOX
SYNTAX: BOX XCENTER,YCENTER,XSIZEzYSIZE;COLOR OPTION

This draws a filled-in rectangle of XSIZE by YSIZE centered at
XCENTER,YCENTER with the drawing mode specified by COLOR OPTION
(values 0-15). See COLOR OPTION in the Words Glossary for the
meaning of the 16 color option values.

EXAMPLE:
BOX 0,0,20,30,5
This will create a rectangle 20 pixels wide and 30 pixels high
in the center of the TV screen with color option 5.

CIRCLE
SYNTAX: CIRCLE XCENTER,YCENTER,XSIZE,YSIZE,COLOR OPTION

Draws a filled-in circle of XSIZE by YSIZE centered at XCENTER,
YCENTER with the drawing mode specified by COLOR OPTION

(values 0-15). See COLOR OPTION in the Words Glossary for the
meaning of these 16 color option values.

EXAMPLE:
CIRCLE 0,0,20,30,5
This will create a circle (actually an ellipse) 20 by 30
pixels in the center of the TV screen with color option 5.

CLEAR

page 13 Tom DeFanti, UICC Box 4348, Chicago IL 60680

SYNTAX: CLEAR

Clears the TV/Monitor screen but not the computer's memory.
RESTART clears the computer's memory.

CLEAR.CRT

SYNTAX: CLEAR.CRT

Clears the CRT terminal screen but not the computer's
memory. RESTART clears the computer's memory.

CMPARA
SYNTAX: CMPARA(A1,A2)

(esoteric)
Function which returns values depending on the comparison of two

arrays (This is usually used to compare SNAPs).

The values returned are:
0 if all elements of A1<=A2
1 1if all elements of A1==zA2
-1 if all elements of A41>=A2
-2 otherwise

COMPILE :
SYNTAX: COMPILE NAME

(esoteric)
Replaces the macro named NAME with the compiled macro of the same

name. Compiled macros are larger but run faster. However,
compiled macros cannot be stored on disk or tape. Several commands
will not work in the compiler;these are: EDIT,CORE, and HELP.

NOTE: You should always COMPILE a copy of the macro you want sped
up because COMPILE deletes the macro it compiles.

EXAMPLE:
If your macro is called FOO, do the following:
CFO0=F00
COMPILE CFOO
CFO0
CONTROL

SYNTAX: CONTROL STRING

(esoteric)
Takes the first character of the STRING and does the same function

as the corresponding control character on the keyboard. This
allows you to put the same functions in a program that you can

page 14

CORE

Tom DeFanti, UICC Box {348, Chicago IL 60680

obtain by typing control characters.

CHARACTER CONTROL CHARACTERS MEANING
(unused at this time)

return to default colors

stop currently running macro(s)
enter/exit debug mode (single step)
suppresses echo on terminal

turn foreground jobs off/on

reset all control characters

(unused at this time) (actually NEXTLINE)
turn on beep for GETUNIX or PUTUNIX
suppress output to screen

halt output to screen

resume output to screen

used by editor

user accessible via $CS

user accessible via $CT

delete whole line being typed

user accessible via $CV

set printout to twenty-line window
list/unlist macro as it is executing

turn on '!' to mark nextline

interrupt executing macro to enter commands, etc.
(resume execution by typing NEXTLINE)

N E <CcHULDOVOZICCRNLHIIOMMBOOW?>

SYNTAX: CORE

COSINE

(esoteric)

Tells you how much memory you have in BYTES in how many fragments.
The first number is the hex address which you should ignore. A
byte will hold one character so if you have a macro that's 500
characters long (USEMAP will give it's length once its in memory),
CORE has to show a fragment with at least 500 BYTES for you to
GETUNIX it.

SYNTAX: COSINE(NUMBER)

DELETE

Function which returns the ccsine of the number.

SYNTAX: DELETE NAME

page 15 Tom DeFanti, UICC Box 4348, Chicago IL 60680

Deletes the NAME {(variable, array, string) from memory and reclaims
the memory for further use. Certain things cannot be deleted
($variables, variables A-Z, commands) so an appropriate error message
accompanies illegal deletion requests.
NOTE: Never delete anvthing that is referenced in a compiled macro
unless you have already deleted that compiled macro.

EXAMPLE:
DELETE RICK .
The item named RICK is deleted from memory.

DISPLAY
SYNTAX: DISPLAY NAME,XCENTER,YCENTER,MODE

Takes SNAPped NAME and writes it at center indicated.
The MODE is one of four writing options:

0 means do nothing

1 means XOR the SNAPped NAME

2 means OR the SNAPped NAME

3 means plop (that is, write)} the SNAPped NAME

A SNAPped NAME is actually an array specially created by the
SNAP command and is essentially an exact copy of an area of screen
memory. You can then use DISPLAY to do animations.

EXAMPLE:
There is an apple drawn at the center of the screen and
it fits in a rectangle 10 x 12 pixels. The following
code will SNAP it and move it on a joystick+:
MOVEIT=[SNAP MAPPLE,0,0,16,18
.LEAVE EXTRA WHITE AROUND FOR ERASING
$X1=0
$Y1=0
.SET JOYSTICK1 X AND Y TO ZERO
DISPLAY MAPPLE, $X1,$Y1,3;SKIP 0]

EDIT
SYNTAX: EDIT NAME
Edits the macro specified.

EDIT CONTROLS

DEL move cursor left a character
TAB move cursor down a line

LINE FEED move cursor up a line

BACK SPACE move cursor right a character

insert before character cursor is under

HOME delete character cursor is under
CLEAR delete line cursor is on
SHIFT+LINE FEED insert line after current line
CONTROL+C get out of EDIT

ESC delete last inserted character (insert mode only)

page 16 Tom DeFanti, UICC Box 4348, Chicago IL 60680

GETERROR
SYNTAX: GETERROR()

(esoteric) (assembled out)
Function which returns the error number that last occurred.

Usually used in conjunction with ONERROR to figure out
programmatically what{ error condition arcse. Cannot be used

outside of the macro in which the error occcurred.

GETERROR. ARG
SYNTAX: GETERROR.ARG()
(esoteric) (assembled out)
Function which returns a number corresponding to the place where
the error occurred on the line. 1 refers to the command name, for

example and 4 would tell you that argument number 3 (the fourth
word) was where the error was found. Used with ONERROR.

GETERROR.STR
SYNTAX: GETERROR.STR()

(esoteric) (assembled out)

Function which returns the command line in error as a string.
It can be used in conjunction witn GETERROR.ARG to pinpocint

the part of the command in error and point it out friendly-like

to the used of your macro.

GETUNIX
SYNTAX: GETUNIX NAME

Gets the named file from disk.
Control+N will cause terminal to beep every 256 characters

read.

EXAMPLE:

GETUNIX MOO
Loads a program named "MOO" into core memory.

GOTO
SYNTAX: GOTC LABEL

Causes the line containing the LABEL to be executed next instead
of the following line. LABELs start with numbers.

EXAMPLE:

page 17 Tom DeFanti, UICC Box 4348, Chicago IL 60680

ARCHERY=[A=zY40
TAGAIN CIRCLE 0,0,A,A,A/10+3
IF A>10,A=A-1;GOTO 1AGAIN]

HELP
SYNTAX: HELP
HELP lists system commands available.
LINE LN(NUMBER) LOG(NUMBER) LOOPMAX
IF
SYNTAX: IF CONDITIONAL,COMMAND

If the CONDITIONAL is satisfied the command following is
executed. Otherwise, control is skipped to the next line.

A CONDITIONAL is an expresssion which evaluates to 0 (false) or

1 (true). Using relational operators ('==', '>', '<', etc.)
expressions are true or false after being evaluated and the rest
of the line {(including ';'s) is executed if the condition is

true. Anything that evaluates to 0 or 1 can be used asithe
first part of an IF statement.

EXAMPLE:
IF A==10,STOP SAM ;.stop SAM only if A is eqal to 10
IF 1,FIXUP ;.this will always happen
IF FLAG,B=C+D ;.this will happen if FLAG==1
IF SIN(BRADIANS)¥*1,25<=.7,DRAW
this last example shows complex expressions are
perfectly OK in an IF statement.

INPUT
SYNTAX: INPUT NAME

Gets a value from the user or the argument list passed to the
macro and stores it as a number in the NAME.

EXAMPLE:
PROMPT "Gimme a number"
INPUT A

Computer will put the inputted value into the variable "A".
INPUT.NAME
SYNTAX: INPUT.NAME NAME
Gets a string of characters from the user or the argument

list passed to the macro and checks it for valid name syntax
and then puts it in NAME 3s a string.

page 18 Tom DeFanti, UICC Box {348, Chicago IL 60680

EXAMPLE: INPUT.NAME CHUCKIT

INPUT.STRING
SYNTAX: INPUT.STRING NAME

(esoteric)

Gets a string of characters and then puts it into NAME.
This option is good for reading an entire line from the
terminal, including commas. It must also be used to pass a
string with commas or spaces as an argument, in which case
it should be enclosed in quotes or other string delimiters.

EXAMPLE: 1INPUT.STRING READLINE

INT(NUMBER)
SYNTAX: INT(NUMBER)

Function which returns the integer part of a floating
number,

EXAMPLE:
INT(5%8)
This will give 5,6, or 7 without the fractional part.

LINE '
SYNTAX: LINE XCOORDINATE,YCOORDINATE,COLOR OPTION

Draws a line from the previous line endpoint to the endpoint
specified by XCOORDINATE and YCOORDINATE in the COLOR OPTION
indicated. The '4' in LINE X,Y,4 will move the endpoint
without drawing anything and should be used to set the first
line endpoint and should be used to set the first line endpoint.

EXAMPLE:
LINE 0,0,4
This command places the line at the center of the screen but
does not draw (option 4).
LINE 100,100,5
Draws a line from the center at Y45 degrees in color option 5.

LN
SYNTAX: LN(NUMBER)

Function which returns the natural log of the number.

page 19 Tom DeFanti, UICC Box 4348, Chicagoc IL 60680

LOG
SYNTAX: LOG(NUMBER)

Function which returns the logarithm base 10 of the number.

LOOPMAX
SYNTAX: LOOPMAX NUMBER

(esoteric)
This command allows you to catch infinite loops by setting a

maximum for the number of skips and gotos that can occur
before an error is caused.

EXAMPLE:
LOOPMAX 500
This allows the program to run thru its cycle 500 times

before an error is caused.

ONERROR
SYNTAX: ONERROR LABEL

{(esoteric)
Sets.up a transfer to label when an error occurs.

You can turn off ONERROR by specifying no label (ONERROR
by itself turns the normal error reporting back on). You
normally put an ONERROR LABEL before a statement that is
likely to cause an error. You can only have one ONERROR
setup per macro at a time but you can change it in the
macro at any time.

EXAMPLE:

ONERROR GOOF
The control will transfer to the area of the program

labelled GOOF and will squelch normal error messages.

PIXEL
SYNTAX: PIXEL(XCOORDINATE,YCOORDINATE)

Function which returns the value of a pixel addressed by the
two coordinates given. O means that color 0 is at that
address on the screen, 1 means that color 1 is there, etc.

EXAMPLE:

PIXEL(20,30)
Say the computer returns a 5, that means color option 5§ is

at location x=20,y=30. Not too tough,huh?

page 20 Tom DeFanti, UICC Box 4348, Chicago IL 60680

POINT

SYNTAX: POINT XCOORDINATE,YCOORDINATE,COLOR OPTION

Draws a point at XCOORDINATE,YCOORDINATE in the color specified.
A point is one pixel in size and is the same as a box with
size 1x1 and a circle with size 1x1.

See COLOR OPTION in the Words Glossary.

EXAMPLE:
POINT G,0C,5
This draws a single pixel in the screen center in color option 5.

POWER
SYNTAX: POWER(NUMBER,NUMBER)

Function which returns the first number raised to the
power of the second number.

PRINT
SYNTAX: PRINT STRING

Prints the value of the STRING on the CRT followed by a
NEXTLINE. Several STRINGS can be used. If you separate them
by commas, a space is printed between them. If you do not
want the space, separate them with '&'s. Stuff in quotes can
also be used (like PRINT "THE ANSWER IS:",A) PRINTS (and
PROMPTS) are suppressed if there are arguments passed to the
macro.

EXAMPLE:
PRINT 245
Prints the sum, or 7.
A=100
PRINT "The sum of 90 + 10 is:",A
The computer responds with:
The sum of 90 + 10 is 100

PRINT.FORCE

SYNTAX: PRINT.FORCE STRING

Like PRINT but forces printing whether or not an argument list
is passed to the macro.

PROMPT

SYNTAX: PROMPT STRING

page 21 Tom DeFanti, UICC Box 4348, Chicago IL 60680

Just like print but does not print the NEXTLINE at the end.
PROMPT has a .FORCE option.

EXAMPLE:
PROMPT "Gimme a number"
INPUT A
PRINT A + 3

This asks for a number from the user then adds three to it
and then will print the sum.

PUTUNIX

SYNTAX: PUTUNIX NAME

Puts the named file onto disk.
Control+N causes a beep every 256 characters transferred.

RENAME

SYNTAX: RENAME NAME1,NAME2
Renames NAME1 to NAMEZ.

EXAMPLE: .
RENAME FQ00,B00O
This renames program named FOO, B0OO. This command is helpful
for getting a program into core from UNIX, renaming it, changing
it and then saving the changed copy under the new name..... the
original program is still on UNIX under the old name.

RESTART
SYNTAX: RESTART

Clears memory and restarts ZGRASS. The "BREAK" key is a
software reset that does not clear memory.

RETURN
SYNTAX: RETURN VALUE

(esoteric)
Returns the value indicated and control to the calling macro.

Useful for creating user defined function calls which return
values.

EXAMPLE:
MAX=[INPUT a,b,c ;.NOTE LOCAL VARIABLES
IF a<b,IF b<c¢c,RETURN ¢
IF a>b,IF a>¢,RETURN a
RETURN b]

page 22 Tom DeFanti, UICC Box 4348, Chicago IL 60680

This will return the maximum of the three parameters
passed and could be used in:
BIGGEST=MAX(OF, THESE, THREE)
HONEY=MAX(CRUNCH1,CRUNCH2,KISS)

SCROLL
SYNTAX: SCROLL XCENTER,YCENTER,XSIZE,YSIZE,NUMBER
Serolls stuff in area indicated NUMBER of pixels up or down.
Serolling means moving the area up or down. A positive

number means scroll up; a negative number means scroll down.
This is the only way to scroll text on the TV monitor.

EXAMPLE:
SCROLL 0,0,40,40,10
This scrolls the area 40 pixels wide by 40 pixels high -
located at the center of the screen up 10 pixels.
SINE
SYNTAX: SINE(NUMBER)

Function which returns the sine of the number.

SKIP
SYNTAX: SKIP NUMBER
Skips the given number of lines (including the one you're on).
It transfers control by counting the number of NEXTLINE's

indicated.

NOTE: SKIP does not allow labels. Use GOTO if you want labels.

EXAMPLE:
SKIP O - hangs in place
SKIP 2 - skips the next two lines
SKIP -3 - goes back three lines

SKIP 1 - does nothing
SKIP 999 is the same as RETURN
SKIP will get you back to the beginning of the macro.

]
O
O
(Yol

]

SNAP

SYNTAX: SNAP NAME,XCENTER,YCENTER,XSIZE,YSIZE

Takes the pixels in the area indicated and saves them in an
array called NAME. The DISPLAY command can then redraw them
somewhere else.

EXAMPLE:

page 23 Tom DeFanti, UICC Box 4348, Chicago IL 60680

SNAP APPLE,0,0,40,40
This takes the information about the area 40 by 40 pixels at
the center of the screen and saves it in an array called APPLE.

SQRT
SYNTAX: SQRT(NUMBER)

Function which returns the square roote of the number.

TEXT

SYNTAX: TEXT XCOORDINATE,YCOORDINATE,COLOR,STRING

This is like PRINT but puts it on the TV monitor. The first
character printed is centered at XCOORDINATE,YCOORDINATE.

TEXT.SCALE
SYNTAX: TEXT.SCALE XCOORDINATE,YCOORDINATE,XSIZE,YSIZE,COLOR,STRING

This is like TEXT but the size is determined by XSIZE,YSIZE.
XSIZE and YSIZE can be controlled indépendently.

EXAMPLE:
TEXT.SCALE 0,0,20,30,5,"HOWDY FOLKS!"

This prints characters 20 pixels wide by 30 pixels high
beginning at the center of the screen in color option 5.

USEMAP
SYNTAX: USEMAP
Gives a list of names currently in use and the number of
BYTES they take up.
WHATSIS
SYNTAX: WHATSIS NAME
(esoteric)

Returns a value for the type represented by the name.
The above command descriptions compiled by Joanne Culver.

Glossary of Terms Used

COLOR

page 24

COLOR MAP

Tom DeFanti, UICC Box 4348, Chicago IL 60680

the 256 COLORs available in Zgrass form an abbreviat-

ed spectrum. You can get four colors on the screen
at any one time. The default colors are white, red,
green and Dblue. They are also known as COLOR O,

COLOR 1, COLOR 2 and COLOR 3. The values are stored
in $L0, $L1, $L2, and $L3 unless you modify $HB to
use the right side colors $RO, $R1, $R2 and $R3.

The COLOR MAP is the way Zgrass translates COLOR 0-3
to the 256 available COLORS. The hardware looks at
the values of $L0-$L3 before it writes a pixel to the
screen. If it is writing a 0, it uses the color
stored in $LO. If it is writing a 1, it wuses the
color stored in $L1, and so on. To change the color
map so 1 refers to yellow instead of red, set $L1 to
127. There are actually two color maps, the $L's and
the $R's. You get to the $R's by setting $HB.

COLOR OPTION

the possible values for COLOR OPTION are 0-15. You
may need to study your truth tables for XOR and OR
logical operations to really understand what's going
on. The following is functionally true, however:
COLOR OPTION Meaning

replace with color 0 (white)
replace with color 1 (red)

replace with color 2 (green)
replace with color 3 (blue)

whh - O

don't draw (actually xor with 00)

xor screen with color 1 (0t binary)
xor screen with color 2 (10 binary)
xor screen with color 3 (11 binary)

~N OV =

8 change red to white, blue to green
(clear bit 0)

9 change green to white, blue to red
(clear bit 1) :

10 or with 01 (if red or white, stay red,
if blue or green, blue)

11 or with 10 (if green or white, stay
green, if red or blue, blue)

12 replace with red only if white
were there
13 replace with green only if
white or red were there
14 increment the color there by 1
(white to red, red to green, green to
blue and blue to white)
15 decrement the color there by 1
(white to blue, red to white, green to

page 25 Tom DeFanti, UICC Box 4348, Chicago IL 60680

red and blue to green)

MACRO
is a STRING that is supposed to contain legal Zgrass
COMMANDS. Most programming languages call such
things 'programs' or 'subroutines' but we call them
MACROS. MACROS are effectively user-defined COM-
MANDS. MACRQOS can behave just like COMMANDS in that
you can pass ARGUMENTS to MACROS with the INPUT COM-
MAND and return values with the RETURN COMMAND. You
define a MACRO just like you define a string (with an
ASSIGNMENT to a NAME or by using EDIT).

STRING
is a collection of characters (numbers, letters,
punctuation) delimited (enclosed) by single or double
quotes or balanced square or curly brackets. If you
have to use a string delimiter in a STRING, make sure
it is delimited by a different string delimiter or
things will get very confused (most likely it will
consider the rest of your MACRO as part of the
STRING). Examples:
"THIS IS A LONGER STRING"
"PRINT A¥B*C
SKIP -1 ;.THIS STRING COULD BE A MACRO TOO"
[THIS IS HOW TO PUT A QUOTE IN A STRING: "'"]
(1234]
(]

SWITCH
is an option for a COMMAND or MACRO. The only
SWITCHES defined for MACROs are .B and .F which cause
the MACRO to be executed in the background and fore-
ground respectively. Many COMMANDS (INPUT, ARRAY,
etc.) have SWITCHES which are given in the Command
Glossary as separate entries. SWITCHES are always
preceeded by the NAME they are modifying and a '.'
Examples:
INPUT.STR SAM
ARRAY.INT FO0O,123
DEATHWEAPON.B

XOR

is a logical operation (also called 'exclusive=~or')
used to draw PIXELS on the screen. What gets drawn
is a value from 0-3 and is computed by the XOR func-
tion of what was there and what you give it to write
there. The reason for this complexity is that a cou-
ple of neat tricks are made possible by XOR. First,
if you draw anything on the screen with XOR (COLOR
modes L4-7) or DISPLAY a SNAPped picture element with
mode 2, you can erase it by simply drawing or
DISPLAYing it again the same way. 1In other words,
two XOR's is the same as nothing. Second, by setting
$L3=¢L2 (and $R3=$R2 if you mess with $HB), you can
make anything XOR written with COLOR 1 pass 'behind!

page 26 Tom DeFanti, UICC Box 4348, Chicago IL 60680

anything written with COLOR 2 (you have to try it to
believe it). At any rate, the XOR table is as fol-
lows, assuming O=white, 1zred, 2=green and 3=blue:

COLOR

GIVEN COLOR THERE

XOR | white reéd green blue
white; white red green blue
red | red white blue green
green, green Dblue white red
blue | blue green red white

besides being tricky, XOR is good for relieving bore-
dom in Zgrass wallpaper art.

.B
means run the MACRO in the background over and over
again until CONTROL+C or STOP is seen. Any MACRO or
COMMAND issued from the keyboard or .F mode will-take
precedence. Example:
ANIMATE=[DISPLAY APPLE,$X1,$Y1,0]
ANIMATE.B
will move the APPLE (a SNAPped picture element) under
control of the first joystick until further notice).
.(esoteric),

.F

is a way of telling a MACRO to execute every 1/60
second. Such macros should be short since they take
precedence over regular and .B MACROS. Example:
TIMESUP=[timer=timer+1

IF timer==180,PRINT 'THREE SECS ARE UP';STOP TIMESUP]

