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Introduction

VERYONE KNOWS THAT COMPUTERS ARE POWERFUL DE-
vices that can be used for many tasks. Sometimes, however,
it is difficult to justify tying up a complete computer system to
perform two or three specific tasks. The solution is to build a spe-
cial purpose computer around a CPU (Central Processing Unit) IC.
This book will help the intermediate to advanced electronics
experimenter design and build custom dedicated CPU projects. The
emphasis will be on customization for individual applications. The
reader is not limited to the circuitry the author considers useful.
The various projects in this book are designed for maximum
interchangeability to allow the experimenter to build almost any
customized system.The first half of the book discusses basic prin-
ciples of circuit design and computer systems. The second half of
the book describes the projects.
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Chapter 1

The Basics of Circuit Design

HIS CHAPTER IS NOT INTENDED TO TEACH THE NOVICE HOW

to design electronic circuits. It is intended strictly as a con-
venient refresher for intermediate and advanced experimenters. If
you do not have any prior experience in this area, I strongly recom-
mend that you read a text or two on general circuit design before
tackling the projects described in this volume. The principles of
electronic design are covered in some detail in my earlier works,
Transistor Circust Design—with Experiments (TAB book 1875) and
Designing IC Circuits . . . with Experiments (TAB book 1925).

SEMICONDUCTORS

All matter, as you should already know, is made of afoms. The
primary components of an atom are protrons (positively charged
particles), electrons (negatively charged particles), and neutrons (neu-
tral particles). The protrons and the neutrons are clumped together
in the nucleus. The electrons circle the nucleus like the planets
around the sun.

Ordinarily, the number of electrons exactly equals the number
of protrons. The negative charges cancel out the positive charges,
and the atom as a whole is electrically neutral.

Some elements can accept extra electrons (gaining a negative
charge), and/or give up a few of their own (gaining a positive
charge). These materials allow electrical current to pass through
them fairly easily. They are known as conductors. Most (but not
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all) conductors are metallic. Silver and copper are typical con-
ductors.

In other materials, it is very difficult to change the number of
electrons. These materials tend to block the flow of electrical cur-
rent. They are called insulators. Typical insulators are rubber and
glass.

Modern electronics depends heavily on a third class of
materials, mid-way between conductors and insulators. These
materials are called semiconductors, and usually are in crystalline
form. The most commonly used semiconductors are germanium
and silicon.

By itself a pure semiconductor material isn’t good for very
much. It can be used to make a fair resistor, and that’s about it.
But, if a small amount of an impurity (a second, related element)
is added, the semiconductor begins to exhibit some special proper-
ties. The amount of impurity is very minute—often as small as one
part in 10,000,000.

Let’s consider what happens if a few arsenic atoms are added
to a slab of germanium. The arsenic atoms will try to act like ger-
manium and join in the crystalline structure. But arsenic has more
electrons than germanium. Once the spaces in the crystal struc-
ture have been filled in, there are still a few electrons left over.
Because these excess electrons are only loosely bond to the arse-
nic atoms, they will move about the entire crystal, ‘‘looking’’ for
a place to settle. Since they can'’t find a convenient niche, they will
continue to roam.

The loose electrons wandering around within our doped ger-
manium crystal represent a small wandering local negative charge.
But the overall charge of the crystal as a whole is neutral, because
the number of electrons exactly equals the number of protons.

If an electrical voltage is placed across the crystal, the loose
electrons will be drawn to the positive terminal, because there is
nothing much to hold them in place within the crystal. So they leave
the crystal altogether for the positive terminal of the voltage source.

Now, there are more protons in the crystal than electrons. The
crystal, as a whole, has a positive charge. It will attract electrons
from the negative terminal of the voltage source. This neutralizes
the crystal’s electrical charge, but the new electrons still can’t find
a place to ‘‘sit”’ so they are drawn out of the crystal by the positive
side of the voltage source. This continues as long as the voltage
source is applied to the crystal.



The semiconductor material is conducting electricity, but in a
somewhat different manner than ordinary conductors. We will ex-
amine the significance of this shortly.

Using arsenic as an impurity adds extra electrons to the crys-
talline structure. Therefore, arsenic is called a donor impurity. Other
donor impurities are antimony, bismuth, and phosphorous. The re-
sult of adding a donor impurity is an n-type semiconductor.

Alternatively, we could dope the crystal with an impurity that
has too few electrons to fill the crystalline structure. In other words,
there are several holes where electrons would fit if they were avail-
able. The surrounding electrons will keep trying to fill up these
holes. They sort of play ‘“musical chairs’”, but it doesn’t accom-
plish much, since there are always more holes than electrons. In
a real sense, the holes move around within the crystal, just as the
loose electrons did in the earlier version. We now have loose holes.
A minute localized positive charge drifts about within the crystal.

Once again, if a voltage source is applied to the semiconductor
crystal, current will flow. Electrons will be pulled in from the nega-
tive terminal to fill the excess holes. This gives the crystal, as a
whole, a negative electrical charge, which is tapped off by the posi-
tive terminal.

Impurities with too few electrons are called acceptor impurities.
Typical elements used as acceptor impurities are aluminum, bo-
ron, and gallium. A semiconductor slab doped with an acceptor
impurity is called a p-type semiconductor.

The Pn Junction

Neither n-type nor p-type semiconductors are particularly ex-
citing or interesting by themselves. Their important properties show
up when a junction is formed between the two different types of
semiconductors.

It is important to remember that both n-type and p-type semi-
conductors have both electrons and holes flowing through them.
The difference is in which type of carrier is in the majority. In an
n-type semiconductor, electrons are the majority carriers and holes
are the minority carriers. In a p-type semiconductor, this is
reversed. When no voltage is applied to a pn junction, the carriers
(electrons and holes) are more or less randomly distributed, as il-
lustrated in Fig. 1-1.

In Fig. 1-2 we see the result of applying a voltage across the
pn junction with the positive terminal connected to the n-type side,



Fig. 1-1. Carriers are randomly distributed around a pn junction when no volt-
age is applied.

and the negative terminal connected to the p-type side. The ex-
cess electrons are drawn towards the positive terminal on the n-
side of the junction. Similarly, the excess holes move towards the
negative terminal on the p-side.

Virtually all the loose carriers are drawn to the ends of the semi-
conductor slab. There are almost no loose electrons or holes near
the junction at the middle. Essentially, the junction is the same as
if it had never been doped with any impurity. It acts as a fair insu-
lator. The result is that almost no current will flow through the junc-
tion. It behaves almost like an open circuit. (There will be a very
small amount of current flow due to the minority carriers but this
is so small that we can reasonably ignore it here.)

Now, let’s see what happens when the polarity is reversed, as
shown in Fig. 1-3. The negative terminal is connected to the n-
side and the positive terminal is connected to the p-side. Since like
charges repel, the loose electrons in the n-type side are forced to-
wards the junction. Similarly, the loose holes in the p-side are also
driven towards the junction. The loose electrons and holes have

+ + _ -
++ -+ _-
++ -
+ -+ -
++ -
+ 4 -+ —:
"'+ -1+ :_
+ + -

s

Fig. 1-2. Aimost no carriers can cross the pn junction when it is reverse biased.
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Fig. 1-3. Current flows through a pn junction when it is forward biased.

enough energy to jump across the junction and neutralize each
other. The loose electrons fill the loose holes.

The p-type semiconductor has a negative charge because ex-
tra electrons from the n-side have filled its holes. Similarly, the n-
type semiconductor has a positive charge because it has lost some
if its electrons.

The positive charge on the n-side draws more electrons from
the negative terminal of the power source, while the excess elec-
trons flow from the negatively charged p-type material to the posi-
tive voltage terminal. This means the n-side again has loose
electrons and the p-side again has loose holes. These are forced
through the junction, and the process continues.

In other words, current can flow through a pn junction in only
one direction. If current is applied in the opposite direction, it is
blocked. A pn junction serves as a semiconductor diode.

The Bipolar Transistor

As useful as the diode is, we can do even more if we have a
pair of back-to-back pn junctions, as shown in Fig. 1-4. In effect
we have a semiconductor sandwich. This device is called a tran-
sistor. There are many different types of transistors. The simplest
(which is shown here) is the bipolar transistor.

There are two possible combinations for a bipolar transistor.
There could be two slabs of n-type material on either side of a thin-
ner slab of p-type material, as shown in Fig. 1-4A. This is called

7



Emitter Collector
0
n P n
|
Base
Base
o
P n p
Emitter Collector

Fig. 1-4. A transistor is basically a pair of back-to-back pn junctions. (A—npn,
B—pnp.)

a npn transistor. Alternatively, we could have a central n-type slab
surrounding by p-type slabs, as illustrated in Fig. 1-4B. This is called
a pnp transistor. The schematic symbols for these two devices are
shown in Fig. 1-5. The three leads have special names—the emit-
ter, the base, and the collector.

In the following discussion, we will discuss just the npn tran-
sistor. The principles are the same except for the electrons and
holes, and all circuit polarities are reversed. The transistor permits
signal amplification because the collector current is dependent on
the base to emitter current.

Alpha

The correct relative polarities (biasing) for an npn transistor
are illustrated in Fig. 1-6. When biased in this manner, more emit-

8



0 Collector
Base
Emitter
npn
Collector
Base
Emitter
pnp

Fig. 1-5. The three leads of a transistor are easy to identify in the schematic
symbol. (A—npn, B—pnp.)

ter current (I) will flow through the transistor than either base
current (I,) or collector current (I). In fact, ignoring a few minor
losses, the emitter current is essentially equal to the sum of the
other two currents. That is:

L=L +1

d

=l

Fig. 1-6. This is a correctly biased npn transistor.



Let’s assume the following currents flowing through a hypothet-
ical transistor:

I, = 20mA
I, =07mA
I = 193 mA

c

Notice that these values fit into the formula given above:
20 = 0.7 + 193

The ratio of the collector current to the emitter current is the
alpha of the transistor. The symbol for alpha is a, and the formula is:

a =1/,

The alpha is a constant for any given transistor. If the emitter
current changes for any reason, the collector current will change
accordingly. The alpha will always be less than 1. This is because
the collector current must, by definition, must be smaller than the
emitter current:

IL=1-1

Ordinarily, the base current (I,) will be very small, so the col-
lector current (I)) will be close to the emitter current (I). This
means that normally the alpha of a transistor will be close to, but
slightly less than 1.

For our hypothetical transistor, the alpha is:

a =1/ = 19.3/20 = 0.965

This is a fairly typical value.

Beta

Another useful relationship among transistor currents is the
ratio of the collector current to the base current. This ratio is called
beta, and its symbol is 8. The formula for beta is:

B = 1/1,
Because the base current is always very small, as compared
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to the collector and emitter currents, beta will normally have a fairly
high value. Typical beta values for silicon transistors range from
about 10 to about 1000.

The value of beta for our hypothetical transistor works out to:

8 = IJ1, = 19.3/0.7 = 27.57

The value of beta can be derived from the value of alpha, by
using this formula:

B =ala-1)

Similarly, if we know the value of beta we can easily find the
value of alpha by using this equation:

a = gI(B + 1)

The Common-Emitter Circuit

There are three basic transistor amplifier circuits. In each of
these, one of the transistor’s three leads is referenced to the cir-
cuit’s ground, or common point.

The common-emitter circuit illustrated in Fig. 1-7, is probably
the most widely used. As the name suggests, the emitter is used
as the common element. It is common to both the input and output
circuits. The input signal is applied to the circuit across the base

R, Output

R

Fig. 1-7. The common-emiitter circuit is probably the most commonly used tran-
sistor circuit.

—|I|i[1HA
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and the emitter, while the output signal is tapped off across the
collector and the emitter.

In most practical circuits, separate power supplies usually
aren’t used for the base (input) and collector (output) circuits. In-
stead, a common voltage source is used for both, as shown in Fig.
1-8. Resistors R2 and R3 drop the voltage down to the necessary
level.

The output of a transistor amplifier is in current form. In the
common-emitter amplifier, the output signal is the collector cur-
rent (I)). Several factors determine the level of this current, includ-
ing, the transistor’s beta, the base supply voltage (E1), the base
resistor (R,), the emitter resistor (R), and the internal voltage
drop across the emitter-base junction. This voltage drop is usually
about 0.7 volt for silicon transistors. Germanium transistors have
a smaller voltage drop across the junction (typically about 0.2 to
0.3 volt).

The approximate value of the collector current (I) can be
found with this formula. It is not exact, but it will be close enough
for most purposes:

Vb“Vbe
c_Rb+Re
B

where V, is the input signal voltage applied to the base, V,, is the
voltage drop across the base-emitter junction, R, is the base resis-

I

+V

R1

2 ) -0
R2 R, Output
Input
R3

Fig. 1-8. A single power supply is usually employed for practical common-emitter
circuits.
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0

Output

Fig. 1-9. This is the basic common-base transistor circuit.

tor, B is the beta, and R, is the emitter resistor.

Let’s say we are using a silicon transistor with a beta of 100.
Since this is a silicon device. V,, will be 0.7 volt. In our sample
circuit' we will assign a value of 5000 ohms to R, and 300 ohms
to R,. Plugging these values into the equation, we get:

I

<

V, - 0.7/(5000/100) + 300
V, - 0.7/50 + 300
V, - 0.7/350

e

In a circuit of this type, the values of V,, R,, R,, and 8 are
constants, so the collector current (I ) is controlled by the voltage
being fed to the base of the transistor (V).

Current gain, voltage gain, and power gain are all high for the
common-emitter amplifier. The output signal is inverted, or 180°
out-of-phase with the input signal.

The input impedance is low and the output impedance is high.

The Common-Base Circuit

In the common-base circuit, shown in Fig. 1-9, the input is ap-
plied across the emitter and the base, and the output is taken from

13



the collector and the base. In this configuration, the signal gain is
defined by the ratio of the collector current (I ) to the emitter cur-
rent (L):

Gain = IJ1,

This is the same as the value for alpha. Therefore, the current gain
must always be less than unity, but this circuit is capable of medium
voltage gain, and high power gain. The output signal is in-phase
with the input signal.

The input impedance is very low, and the output impedance
is very high. This circuit is often used for impedance matching ap-
plications.

The Common-Collector Circuit

The third configuration for a transistor circuit is the common-
collector amplifier, which is shown in Fig. 1-10. In this circuit, the
input signal is fed across the base and the collector, and the output
is tapped off across the emitter and the collector.

Notice that the positive terminal of the voltage source is
grounded so all operating voltages within the circuit must be nega-
tive. The emitter is normally held at the most negative level.

Output

Fig. 1-10. Transistor circuits can aiso be arranged in a common-collector con-
figuration.
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Base 1

Fig. 1-11. A UJT is a transistor with >
a single pn junction. Emitter

Base 2

The voltage gain for a common-collector amplifier is always
less than 1 (below unity). The current gain is fairly high, but the
power gain is low. This configuration actually dees not make a very
good amplifier.

The input impedance is moderately high, and the output im-
pedance is low, so the common-collector circuit is often used for
impedance matching in multiple-stage transistor circuits. The out-
put signal is in-phase with the input signal.

Other Transistor Types

Generally, when we say “‘transistor’”’ we are referring to the
bipolar transistor, as described in the last few pages. Bipolar tran-
sistors are certainly the most common type of transistors. But there
are other important types of transistors, each with their own unique
internal structure.

The unijunction transistor, or UJT, has just a single pn junc-
tion. Its schematic symbol is shown in Fig. 1-11. The internal struc-

Emitter

o/

Base 1 e=—————— n

Base 2

Fig. 1-12. The UJT has two base connections.
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Base 1

Fig. 1-13. This is a simpli-
Emitter » fied equivalent circuit for a
n-type UJT.

Base 2

ture of the UJT is illustrated in Fig. 1-12. Notice that there are
two base connections, on either side of the larger n-type section.

The n-section acts as a voltage divider resistor pair, with a di-
ode (the pn junction) connected to the common end of the two
resistances. A simplified equivalent circuit for an n-type UJT is
shown in Fig. 1-13.

Closely related to the UJT is the PUT, or Programmable
Unijunction Transistor. The schematic symbol for this device is
shown in Fig. 1-14. Its internal structure is shown in Fig. 1-15. The
PUT has three leads, labeled A (anode), C (cathode), and G (gate).

A voltage is placed across the anode and the cathode, with the
anode positive with respect to the cathode. No current will flow

Anode

Fig. 1-14. A variation on the UJT is Gate
the PUT.

Cathode
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Gate

Anode— p n p n [-—Cathode

Fig. 1-156. The basic internal structure of the PUT.

between the anode and cathode until a negative (with respect to
the anode) pulse is applied to the gate.

A silicon-controlled rectifier, or SCR, is essentially an electri-
cally switched diode. It is very similar to the PUT. The schematic
symbol for a SCR is illustrated in Fig. 1-16. As Fig. 1-17 illustrates,
the main difference in the internal structure between the SCR and
the PUT is the location of the Gate connection.

If a voltage is applied between the anode (+ ) and the cathode
(-), and the gate is grounded (0 volts), no current will flow, even
though the pseudo-diode is forward biased.

If an increasingly positive voltage is applied to the gate termi-
nal, it will eventually reach a specific trigger voltage (which is de-
pendent on the individual SCR used). Now, current can flow from
the cathode to the anode, as if through an ordinary forward-biased
diode.

If the gate voltage is now removed, current will continue to
flow through the device. This current will continue to flow until
the voltage between the anode and the cathode is interrupted.

Perhaps the second most commonly used type of transistor is

Anode

Fig: 1-16. A SCR is essentially an
electrically switched diode.
Gate

Cathode
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Gate

Anode

o} n o] n p——Cathode

Fig. 1-17. The internal structure of the SCR is similar to that of the PUT, ex-
cept for the location of the gate connection.

the FET, or field-effect transistor. The schematic symbol for the
FET is shown in Fig. 1-18.

Many transistor circuits are variations on older vacuum tube
circuits. There are many similarities in operation between transis-
tors and vacuum tubes. However, the operation of a standard bipo-
lar transistor doesn’t quite correspond to that of a vacuum tube.
Some transistor circuits won’t work as well as vacuum tube circuits.

Does this mean we have to forego modern semiconductor tech-
nology and revert to bulky, expensive, and hot vacuum tubes? Not
at all. The FET is a semiconductor device that can closely mimic
the operation of 2 vacuum tube. In addition, it is capable of several
unique tricks of its own.

The basic internal structure of a FET is illustrated in Fig. 1-19.
Notice that there are again three leads. In this case they are labelled
S (source), D (drain), and G (gate).

To get a general idea of how a FET works, consider the
mechanical water system illustrated in Fig. 1-20. When the valve
(gate) is fully opened, as in Fig. 1-20A, the water can flow through
the pipe, from its source to where it can drain out. If, on the other

Drain
Fig. 1-18. FETs are almost as popu-
Gate lar today as simple bipolar tran-
sistors.
Source
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Fig. 1-19. Simplified diagram of a FET's internal structure.

Source Water
Pipe\
Valve
N
Gate !
-4

o

A A U
\Drain/'e

Source

Gate

Fig. 1-20. A FET can be thought of as similar to a mechanical water pipe system.

19



hand, the valve is partially closed, as in Fig. 1-20B, the amount of
water that can flow through the pipe is limited. Less water comes
out of the drain. If the valve is completely closed off, no water at
all will be able to flow through the pipe. Nothing will come out of
the drain. In the same way, the gate terminal of a FET controls
the amount of electrical current that can flow from the source ter-
minal to the drain terminal.

The basic FET described above is more properly called a junc-
tion field-effect transistor JFET). This is not the only type of FET
available. Another type does not have an actual pn junction at all.
These devices are known generically as insulated gate field-effect
transistors, or IGFETSs. As the name clearly states, the gate is in-
sulated from the channel.

The most common way of doing this is by using a thin slice
of metal as the gate (rather than a slab of semiconductor crystal).
This metal is oxidized on the side that is placed against the semi-
conductor channel. This insulates the gate from the semiconduc-
tor because metal oxide is a very poor conductor. When a metal
oxide gate is used, the IGFET is often called a MOSFET, or metal-
oxtde-stlicon field-effect transistor. The basic internal structure of a
MOSPFET is illustrated in Fig. 1-21. The schematic symbol is shown
in Fig. 1-22.

Gate
Insulation
Source n p——Drain
p
Substrate

Fig. 1-21. A variation on the FET is the MOSFET.
20



Drain

Gate } Substrate

Source

Fig. 1-22. The schematic symbol used to represent a MOSFET.

The IC

The transistor, and its relatives, made a lot of electronic appli-
cations practical that would not have been feasible using vacuum
tubes. The transistor went a long way towards reducing the size
and cost of electronic circuitry, but the industry still wasn’t satis-
fied. Semiconductor techniques were improved and miniaturization
was increased, leading to the development of the infegrated circuit,
of IC. Muitiple transistors, and other components (such as resis-
tors and capacitors) are etched onto a single slab of semiconductor
material about the size of your thumbnail. The earliest ICs replaced
just a handful of discrete components, which was impressive in and
of itself, but modern ICs can be the equivalent of hundreds or even
thousands of discrete components. It is the IC that makes the
microcomputer possible.

In this book we will be concerned primarily with digital ICs.
These devices will be discussed in more detail in Chapter 2.

OHM’S LAW

Anyone working with circuit design needs at least a basic grasp
of a number of mathematical formulas. Fortunately, these aren’t
really as hard to use as you might suspect.

The most important and widely used formula in electronics
work is also the simplest. You can’t possibly do any serious work
in the electronics field without knowing Ohm’s law.

Ohm’s law is a method for comparing the current, voltage, and
resistance in a circuit. The basic formula states that the voltage
(in volts) (E) equals the product of the current (in amperes) (I) mul-
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tiplied by the resistance (in ohms) (R). That is:
E = IR

This formula can be easily rearranged to solve for any of the
three variables involved. For example, to find the current when
you know the voltage, and the resistance, use this formula:

I=ER

Similarly, if you know the current and the voltage, you can find
the resistance by using this equation:

R = EN

Let’s consider a few simple examples. If we have 20 mA (0.02
amp) across a 100-ohm resistor, the voltage drop will be equal to:

E =1IR = 0.02 x 100 = 2 volts

Now, let’s say we have 9 volts applied across a 2.2 k@ (2200
ohm) resistor. The current flow works out to:

I = E/R = 9/2200 = 0.0041 amp = 4.1 mA

If we need a 15-volt drop and a current flow of 35 mA (0.035
amp), what size resistor do we need? The required resistance can
be easily found using the Ohm’s law formula:

R = E/MT = 15/0.035 = 43 ohms

POWER
The fourth most important parameter in electrical circuits (af-
ter voltage, current, and resistance) is the amount of power con-
sumed. The standard unit for power is the watf. Power, in watts,
equals the product of the voltage (in volts) multiplied by the cur-
rent (in amps). That is:
P = EI

As a practical example, let’s say we have 250 mA (0.25 amp)
current flowing in a 10-volt circuit. The power consumption in this
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circuit would work out to:
P = El = 10 x .25 = 2.5 watts

In some circumstances it may be convenient to combine the
power formula with Ohm’s Law. For instance, let’s say we know
the current and resistance, and we need to know the power, but
we're not too concerned about the voltage. Ohm’s law allows us
to derive the voltage from the current and the resistance:

E =1R

We can substitute this formula for the value of E in the power
equation:

P=El=IxRxI=IR

The power equals the current squared, multiplied by the resistance.
Similarly, we can find the power from the voltage and the re-
sistance, without knowing the current:

I1=ER
P =EI = E x (ER) = E¥R

COMBINING COMPONENT VALUES

Most practical electronics circuits are fairly complex, includ-
ing several different resistances, capacitances, and inductances. In
addition, in designing a circuit an unusual component value may
be required even though it is not readily available. To deal with
both these situations, we need to know how to combine component
values.

Combining Resistances

We will probably be working most frequently with multiple
resistances. Multiple resistances may be combined in series, as
shown in Fig. 1-23 or in parallel, as shown in Fig. 1-24.

The series combination is perfectly straightforward. The
resistances are simply added together:

R =Rl1+R2+R3+...4+R
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R1

R2 Fig. 1-23. Resistances in series add.

R3

For example, let’s say we have the following three resistances in
series:

220 ohms
100 ohms
470 ohms
The total effective resistance would be equal to:

R, = 220 + 100 + 470 = 790 ohms

R1 R2 R3

VVV

Fig. 1-24. Multiple resistances may also be combined in parallel.
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The formula for parallel resistances is not quite so obvious:

/R, = URl1 + /R2 + 1/R3 + ... + 1R,
Using the same resistance values in the preceeding example, we
find the parallel combination works out to:

IR, = 1/220 + 1/100 + 1/470 = 0.0045 + 0.01 +
0.0021 = 0.0166

R, = 1/0.0166 = 60 ohms

Most practical circuits include both series and paraliel
resistances. To combine the values, simply break up the circuit into
simple series or parallel combinations in steps. A simple example
is shown in Fig. 1-25. First add the series combination of R, and
R, (R,,), then figure the parallel combination of R,and R_ (R ).
Finally, take the series combination of R, and R,.

The series combination will always result in a total greater than
any of the individual resistances making up the combination. A par-
allel combination always leads to a smaller total resistance than any
of the individual resistances making up the combination.

Fig. 1-25. In practical circuits we usually find both series and parallel resistances.
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Combining Capacitances

Capacitances are combined in just the opposite way as
resistances. For series combinations of capacitances, use this
formula:

1/C, = 1/C1 + 1/C2 + 1/C3 + ... + 1/C,
Or, when there are just two capacitances in series:
C = (C1 x C2/C1 + C2)
Capacitances in parallel simply add:

C,=C+C+C+...+C

Combining Inductances

Inductances don’t figure too prominently into the types of cir-
cuits we will be discussing in this book, but it is worth mentioning
that they combine in exactly the same way as resistances. That
is, for series combinations:

L=L1+L2+1L3+...+L

And, for parallel combinations:

VL, =1Ll + 1/L2 + VL3 + ... + 1L

L, = (L1 x L2)AL1 + L2)

KIRCHHOFF'S LAWS

Some circuits, like the one shown in Fig. 1-26, can’t be reduced
to convenient series and parallel combinations. Kirchhoff’s laws
are a set of handy tools for analyzing complex electronics circuits.

Kirchhoff's Voltage Law

Kirchhoff’s voltage law is based on the concept of the loop. A
loop is simply any closed conducting path. It may include voltage
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Fig. 1-26. Some circuits cannot be reduced to simple series-paraliel combi-

nations.
R, R,
NV
+ il
Bl — R. —B2

—— Sy :

Fig. 1-27. This circuit is used in the discussion of Kirchhoff's laws.
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sources (but not current sources), resistances, reactances, and con-
ductors in any series combination. The circuit shown in Fig 1-27
has three loops, which are illustrated separately in Fig. 1-28. We
only need to look at two of these to fully analyze the circuit. When
using Kirchhoff’s voltage law, you use the minimum number of
loops that contain all of the circuit elements. Often there are several
possibilities, and it doesn’t matter which you use—you’ll get the
same results. Therefore, it makes sense to select the loops that will
be the easiest to work with.

In Fig. 1-28 the loop currents are shown. A loop current is as-
sumed to flow only within its associated loop. It is a mathematical
fiction, which may or may not correspond to the real current actu-

'\
y
i

B1

—— +

Fig. 1-28. The sample circuit has three loops.
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ally flowing through that portion of the circuit. The loop current
is assumed for mathematical convenience. The equations will work
out and ultimately give us the correct results, and that’s what
matters.

Simply put, Kirchhoff’s voltage law states that the algebraic
sum of all voltage sources in any loop is equal to the algebraic sum
of the voltage drops around the loop. The entire voltage is dropped
within the loop. The voltage drops are considered to be caused not
just by the loop’s current, but by any other loop current flowing
through the resistance element in question.

Select a direction (either clockwise or counterclockwise) for
each loop current. It doesn’t matter whether this relates to the direc-
tion of the actual current flow or not. If the ‘“‘wrong” choice is made,
the results will be negative rather than positive. The numerical
values will be the same in either case.

It usually is simplest if all loop currents are assumed to flow
in the same direction. I have arbitrarily selected a clockwise direc-
tion as a standard in the following examples.

The sign of the current flow through a resistance element de-
termines the polarity of the voltage drop across that element. If
the current through a resistance element is in the same direction
as the loop current, the voltage drop is positive, otherwise, it is nega-
tive. Of course, voltage drops due to the loop current will always
“be positive, by definition. Voltage drops due to external loop cur-
rents may be either positive or negative.

If the loop current flows through a voltage source from the
negative terminal to the positive terminal, the voltage is given a
positive value, otherwise, it is negative.

Let’s put Kirchhoff’s voltage law to work analyzing the circuit
shown in Fig. 1-27. Loops A and B in Fig. 1-28 contain all of the
circuit elements, so they will be sufficient for our analysis. We can
ignore loop C.

For our example, we will assume the following values for the
circuit elements:

Bl = 9 volts
B2 = 12 volts
R, = 10 ohms
R, = 50 ohms
R, = 20 ohms

The circuit is redrawn in Fig. 1-29 with the two loop currents
shown.
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Fig. 1-29. The circuit is redrawn here for convenience, with two loop currents
shown.

In loop A we have one voltage source (B1), and two resistance
elements (R, and R)). Only loop current I, flows through R,, so the
voltage drop across this component is simply:

E =1 xR,

However, two loop currents (I, and L) flow through R.. Since
I, is flowing in the opposite direction as 1,, it is given a negative
value. The total voltage drop across this resistance element
becomes:

E =@ xR)- (I xR)

According to Kirchhoff’s voltage law, the sum of all voltage
sources in the loop must be equal to the sum of all voltage drops
in the loop. Therefore:

Bl = E, + E,
I, xR)+d, xR) - (@, xR)
L xR, +R) - (I, xR)

Plugging in the values from our parts list, we find:

g =1 x (10 + 20) - (0, x 20)

@, x 30) - (I, x 20)
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We can do the same thing with loop B:

B2 = I, xR)+ (L xR)-({, xR)
=Lx®,+R)-({ xR)
I, L, x (50 + 20) - (I, x 20)

(I, x 70) - (I, x 20)

We now have a pair of simultaneous equations with two
variables:

(I, x 30) - (I, x 20)
(I, x 70) - (I, x 20)

g
L

noi

There are several methods for solving simultaneous equations.
This is probably the simplest approach. First, rearrange one of the
equations, as if solving for one of the variables. We will modify
the second equation to give a formula for IL,:

I, = (I, x 70) - (I, x 20)

L + I, x20)=1x70
L = [, + d; x 20070

Now, we can substitute this formula for I, in the first
equation:

g = (I, x 30) - (I, x 20)

|
—_—
b
™

x 30) - {[(T, + (I, x 20070} x 20)
= (I, x 30) - {[(1, x 20) + (I, x 20 x 20))70}
= (I, x 30) - {(240/70) + [(I, x 400)/70]}
= (I, x 30) - [343 + (I, x 5.71)]
= (I, x 30) - (I, x 5.71) - 3.43
= [I, x 30 - 5.71)] - 3.43
= (I, x 24.29) - 343 =

Because we have only one unknown variable in this equation
now, we can rearrange the equation to solve for the unknown value:

= (I, x 24.29) - 343
9+343=I x 24.29
1243/2429=I
051 =1,

Loop current 1, equals approximately 0.51 amp.
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Now that we know the value of I, we can use our modified for-
mula to solve for L,
L = [, + (I, x 20))70
(I, + (0.51 x 20)J70
(I, + 10.24)70
22.24170
0.32 amp

nu

The next step is to use these current values to find the actual
voltage drops across each of the resistance elements.
Resistor R, is affected only by current I, so:

E, =1 xR,
0.51 x 10 = 5.1 volts

Resistor R, however, is affected by both the loop currents, so
the voltage drop is slightly more complex:

E

[

I, xR) - (I, x R)
(0.51 x 20) - (0.32 - 20)
= 10.2 - 6.4 = 3.8 volts

Finally, R, is affected only by loop current I,, so its voltage
drop works out to:

E,

L, x R,
= 0.32 x 50 = 16 volts

Wait a minute! How can more voltage be dropped than exists
in the loop? Loop B contains only B2, which puts out 12 volts. The
answer lies in our sign conventions. I, runs counter to I,. So, for
loop B, the voltage drop across R_ is:

E, (I, xR) - (@A, xR)
(0.32 x 20) - (0.51 x 20)
6.4 - 10.2 = -3.8 volts

B1 should equal the sum of the voltage drops in loop A (E, and
E) and B2 should equal the sum of the voltage drops in loop B (E,
and E_):
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Bl =
B2 =

(=]

E + E = 5.1 + 3.8 = 8.9 volts

= M c

) + E, =16 - 3.8 = 12.2 volts

o

The slight differences here are due to cumulative roundoff errors
in the calculations. Our results are close enough for most practical

purposes.

Kirchhoff’'s Current Law

Besides his voltage law, Kirchhoff also came up with a law for
analyzing currents in complex circuits. Remember that the loop cur-
rents we dealt with in Kirchhoff’s voltage law were mathematical
fictions, which may or may not correspond to the actual current
flowing through the components. To deal with actual currents,
rather than the mathematical fictions of Kirchhoff’s voltage law,
we use Kirchhoff’s current law.

Again, we have to start off with a simple definition. A node
is a connection point between two or more conductors. The nodes
in our sample circuit are indicated in Fig. 1-30.

According to Kirchhoff’s current law, the amount of current
flowing into a node always exactly equals the current flowing out
of that node. In other words, the algebraic sum of all currents
through a node is zero. Current flowing into a node is assumed to
be positive. Current flowing out of a node is assumed to be negative.

Fig. 1-30. For Kirchhoff's current law, circuit nodes are identified.
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For voltage drops across resistance elements, the terminal
where the current enters is assumed to be at a higher potential than
the terminal where the current exits.

If a circuit has N nodes, we will need to examine N -1 nodes
to completely analyze the circuit. In our sample circuit of Fig. 1-30,
we only have two nodes, so we only need one to solve the circuit.
We will use node A. There are three current paths into node A.
These are marked in the diagram as I, I,, and I,. According to
Kirchhoff’s current law, the algebraic sum of these currents must
be equal to zero. That is:

L+L+1L,=0

Current I, flows through resistor R,. It is obviously equal to
the voltage drop across R,, divided by its resistance (Ohm’s law—I
= E/R).

Now, the voltage drop across R, must be equal to the voltage
going into the resistance element at the positive terminal (which
is Bl in this case) minus the voltage at the negative terminal of
the resistance element, which we will call E,. The current direc-
tion of I, means node A is less positive (more negative) than node
B, so voltage E, takes on a negative sign. Putting this all together,
we can create an Ohm’s law equation for current I:

I, = [B1 - (-E)IR,
The two negative signs in front of E, cancel out, leaving:
I, =(B1 + E)R,

Current I, is defined by the voltage drop across R_. This is
simply equal to E,, so:

L, = E/R,

Finally, I; is determined by the voltage drop across R,. The
input voltage is B2, and the output voltage is E,. B2 is negative
because of the battery polarity. E, is negative because of the direc-
tion of the L, current flow. This makes I, equal to:

I, = [-B2 - (-E)JR, = (E, - B2)R,
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The next step is to substitute these formulas into the original
node equation:

L+L+1,=0
[(B1 + E)R] + (E/R) + [E, - B2)R] =0

We can simplify and rearrange the equation like this:
E, x [(1/R) + (/R + (1/R)] = (B2/R,)) - (BL/R)
Before we go any further we will need some specific compo-

nent values to work with. We will use the same values we used
in the Kirchhoff’s voltage law example:

Bl = 9 volts

B2 = 12 volts
R, = 10 ohms
R, = 50 ohms
R, = 20 ohms

Plugging these values into this equation, we find:

E, x [(1/10) + (1/50) + (1/20)] = (12/50) ~ (9/10)
E, x (0.1 + 0.02 + 0.05) = 0.24 - 0.9

E, = 0.17 = -0.66

. = —0.66/0.17 = -3.88 volts

E

The negative sign simply indicates that the polarity is the opposite
of the one we assumed.

We can now go back and solve for each of the currents in the
circuit.

I, =(B1 + E)R, = (9 - 3.88)/10
= 5.12/10 = 0.512 amp = 512 mA

LL=E/R = -3.88/20 = -0.194 amp = -194 mA

I, = (E, - B2)R, = (-3.88 - 12)/50 = -15.88/50 =
-0.318 amps = -318 mA

The negative values for I, and I, simply indicate that the ac-

tual direction of current flow is the opposite of that shown in Fig.
1-30.
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Let’s doublecheck our work by plugging the derived current
value back into the node equation:

L+L+1=0
0.512 + (-0.194) + (-0.318) = 0
0.512 - 0.194 - 0.318 = 0

Yes. It works.

Of course, other circuits will result in different equations. The
more nodes there are, the more equations you will have to work
with.

AC VALUES

Formulas like Kirchhoff’s laws and Ohm's law work very con-
veniently with dc voltages and currents. Everything is neat and
straightforward. But, many electronics circuits carry ac voltages
and currents. By definition, an ac signal continuously changes its
value from instant to instant. How can we deal with constantly fluc-
tuating parameters? What numbers can we plug into our equations?

There are several different methods of measuring ac signals.
All are useful in some circumstances. The most straightforward
approack is to simply identify the maximum level the signal reaches
during each cycle. In the sine wave shown in Fig. 1-31, the peak
value is 10 volts. Unfortunately, the peak value doesn’t help us much
in the circuit equations we are dealing with in this chapter. The
actual voltage is 10 volts for only a small portion of each cycle.
Usually the actual voltage will be lower than the peak value.

Closely related to the peak value is the peak-to-peak value. This
is nothing more than the measurement of the distance from the posi-
tive peak to the negative peak. In our sample sine wave, the peak-
to-peak value is 20 volts (+ 10 volts to ~ 10 volts). For sine waves,
the peak-to-peak value will always be twice the peak value.

An obvious solution would be to calculate the average value
of the ac signal. To do this, you use only half the cycle (either posi-
tive or negative, it doesn’t matter). If the entire cycle is used, the
mathematical average will always work out to zero because the two
opposite half-cycles will cancel each other out. For sine waves, the
average value will be equal to:

Average = 0.636 x Peak

This equation is not valid for other waveshapes.
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Fig. 1-31. Even a simple sine wave can be measured in several different ways.

The average value gives us a better idea of the ac parameters.
Unfortunately, it cannot be used in standard circuit equations, such
as Ohm’s law.

What we need is a way to determine the equivalent dc value
for the ac signal. This can be experimentally determined by pass-
ing the signals through a resistance element. The ac voltage that
heats up the resistance element the same amount as the dc voltage
is assumed to be ‘“‘equal” to the dc voltage.

A complex mathematical formula can be used to calculate the
equivalent value. The system is called root-mean-square, or RMS.
Fortunately, we don’t have to bother with the derivation. The RMS
value of a sine wave can be calculated directly from the peak value
by using this formula:

RMS = 0.707 x Peak

The RMS value can also be found by starting with the aver-
age value, using this equation:

RMS = 1.11 x Average

Remember that these equations are valid for sine waves only.
RMS values can be plugged directly into Ohm’s law, Kirch-

hoff's laws, and other dc formulas, and will give the correct results.
Here is a summary of the basic ac values and their relationships:

RMS = 0.707 x Peak

RMS = 1.11 x Average
Average = 0.9 x RMS
Average = 0.636 x Peak

Peak = 1.41 x RMS

Peak = 1.57 x Average
Peak-to-Peak = 2 x Peak
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These equations are for sine waves only. They will not give cor-
rect results for other waveforms. Fortunately, for the circuit
designer sine waves are by far the norm.

RESISTANCE IN AC CIRCUITS

Ac resistance is even more complex, because it is made up of
several components:

O Resistance
O Capacitive Reactance
O Inductive Reactance

The resistance component is the same as dc resistance. Itisa
constant, and does not change with the frequency of the ac signal.
The reactance components are frequency dependent. Capacitive reac-
tance decreases with increases in frequency. It is defined as the ac
resistance of a purely capacitive component. The formula is:

X, = 1/2 = FC)

Capacitive reactance is infinite at dc (0 Hz).

Inductive reactance is the ac resistance exhibited by a purely
inductive component (coil). It increases with increases in frequency.
The formula for inductive reactance is:

X, =2xFL

Practical circuits include a combination of capacitive reactance,
inductive reactance, and resistance. The total ac resistance at a
specific frequency is called the impedance. Remember that im-
pedance is a frequency specific value. It will change with the ap-
plied frequency.

Capacitive and inductive reactances are, by definition, out-of-
phase with each other. This means that they can not simply be
added together. The formula for calculating impedance is:

z=JyR+ X - X

where Z is the impedance, R is the dc resistance, X is the induc-
tive reactance, and X, is the capacitive reactance. All values are
in ohms.

The circuit shown in Fig. 1-32 includes an ac voltage source,
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Fig. 1-32. For ac resistances we have to consider capacitors, and inductors,
as well as simple resistors.

a capacitor, a coil, and a resistor. For simplicity, we will assume
that each of the components is theoretically perfect—that is, the
capacitor is purely capacitive (no resistive or inductive elements)
the resistor is purely resistive, and the coil is purely inductive. All
practical components will exhibit some dc resistance and both
capacitive and inductive reactance. Fortunately, in most cases the
leakage values (resistance and inductance in a capacitor, for in-
stance) are usually so small they don’t have any noticeable effect
on the circuit’s operation, so they may be reasonably ignored.

For our sample problems, we will assume the following com-
ponent values:

Ac voltage 120 volts

R 2700 ohms (2.7 kQ)
C 0.22 uF (0.00000022 farad)
L 150 mH (0.15 henry)

We can’t perform any of the calculations without knowing the
signal frequency. We will start by assuming that it is 60 Hz. This
makes the capacitive reactance equal to:

X

(4

1/(6.28 FC)
1/(6.28 x 60 x 0.00000022)
1/0.0000829
= 12057 ohms
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For convenience, we can round this off to 12,000 ohms, or 12 kQ.
At the same time, the inductive reactance works out to about:
X 6.28 FL
6.28 x 60 x 0.15
56 ohms

The dc resistance, of course, is unaffected by the signal fre-
quency. It is a constant 2700 ohms.

Combining the three resistive values (R, X, and X)) we get a
total impedance of:

z

JR? + X, - X P

J 27002 + (56 - 12057F
J7290000 + (- 12001
J 7290000 + 144024000
J 151314000

12301 ohms

at 60 Hz.
Finally, we can now use Ohm’s law to find out how much cur-
rent is flowing through this circuit at 60 Hz:

1 = E/Z = 120/12301 = 0.0098 amp = 9.8 mA

Next, let’s see what happens when we increase the signal fre-
quency to 250 Hz:

X

C

1/(6.28 x 250 x 0.00000022)
1/0.0003456
2894 ohms

6.28 x 250 x 0.15 = 236 ohms

el
1

J 27002 + (236 - 2894)
7290000 + 2364

J7290000 + 7065532

3789 ohms

—
(I

120/3789 = 0.0317 = 31.7 mA
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Now we will increase the signal frequency to 1000 Hz. (We
won’t bother to show the intermediate steps of the calculations):

723 ohms

942 ohms

2709 ohms

0.0443 amp = 44.3 mA

HN%"N
oo

One last example. This time the signal frequency is 5000 Hz:

X. = 145 ohms
X, = 4172 ohms
Z = 5306 ohms
I = 0.0226 amp = 22.6 mA

Notice how the impedance in this circuit starts out high (low
current), then decreases as the signal frequency increases (current
flow increases), until a certain point is passed, then the impedance
starts to increase (and current flow decreases) as the signal fre-
quency is further increased. The crossover point is of considera-
ble significance. It is called resonance.

Series Resonance

Because the capacitive reactance decreases as the signal fre-
quency increases, and the inductive reactance increases with the
signal frequency, at some specific frequency the capacitive reac-
tance will be exactly equal to the inductive reactance. Something
very interesting happens at this frequency:

Z=JVR+X-X2=JR+ 0P
JRE+0=JyRE=R=12

The capacitive and inductive reactances cancel each other out.
The ac impedance simply equals the dc resistance. If you think
about it for a minute, it becomes clear that this is the minimum
value the impedance of the circuit can ever have.

The condition when the capacitive reactance equals the induc-
tive reactance is called resonance. The frequency where this oc-
curs is called the resonant frequency. There is always one (and only
one) resonant frequency for any capacitance/inductance series com-
bination.
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At resonance, a capacitance and an inductance in series exhibit
their minimum impedance. At frequencies above or below reso-
nance, the impedance will be greater. The further away from the
resonant frequency the signal frequency is (in either direction) the
higher the circuit impedance.

The resonant frequency for any capacitance/inductance com-
bination can be found with this formula:

F = 1/2 xJLC)

where F is the frequency in hertz, L is the inductance in henries,
and C is the capacitance in farads. Of course, 2 x is about 6.28.

Let’s find the resonant frequency for the sample circuit we have
been using for the last few pages. Remember, C = 0.00000022 and
L = 0.15:

1/6.28 x +/(0.15 x 0.00000022) )
1/(6.28 x /0.000000033 )

1/(6.28 x 0.001817)

1/0.0011414

876 Hz.

The resonant frequency formula can be rearranged to solve for
either of the component values. Notice that the dc resistance has
absolutely no effect on the resonant frequency.

Let’s say, for example, we need a circuit that is resonant at
1000 Hz. We will keep our 150 mH coil. What value should we
change the capacitor to for the required resonant frequency? First,
we rearrange the equation, which becomes:

C = 1/4 #°F’L)

4 x? equals approximately 39.48, so the equation may be simpli-
fied to:

C = 1/(39.48 F2L)

Plugging in the values for our sample problem, we find we need
a capacitance of about:
C 1/(39.48 x (1000 x 0.15)
1/ (39.48 x 1000000 x 0.15)
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1/5921762.6
0.000000169 farad
0.169 uF

I

Similarly, the resonance equation may also be rearranged to
solve for the inductance value:

L = 1/(39.48 F2C)

Parallel Resonance

So far we have been dealing solely with circuits in which the
capacitive element and the inductive element are in series, as shown
in Fig. 1-32. But they may also be connected in parallel, as illus-
trated in Fig. 1-33. This change has a number of effects. For one
thing, the impedance equation becomes somewhat more complex:

Z =R +[X x X)X, - X)P

To study the effects of this, we will use the same values from
our previous example problems:

Ac voltage = 120 volts
R = 2700 ohms
C = 0.22 xF (0.00000022 farad)
L = 150 mH (0.15 henry)

It

There is no need to repeat the reactance calculations for individual
frequencies, since they are exactly the same as before:

60 Hz X = 12057 X, = 56

Fig. 1-33. In a parallel resonant cir-
cuit, the ac resistance is theoretically Cc
infinite at resonance.

i
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250 Hz X = 2894 X, = 236
1000 Hz X, =723 X = 942
5000 Hz X, = 145 X, = 4712

The impedance at 60 Hz is therefore equal to:

J 27002 + [(56 x 12057)/(56 — 12057)F
J 7290000 + (675192/-12001)2
J 7290000 + (- 56.26)

J7293165.3352

2700.5861 ohms

Z

Skipping the intermediate steps of the calculation, we find that
raising the signal frequency to 250 Hz changes the impedance to:

Z = 2712.2 ohms

Now, if the signal frequency is 1000 Hz, the impedance works
out to:

Z = 4118.42 ohms

Finally, when the signal frequency is raised to 5000 Hz the im- ’
pedance becomes:

Z = 2704.1415

Notice that as the frequency increases, the impedance in-
creases, until a specific point is reached. Then the impedance starts
to decrease with increasing frequency. Once again, the crossover
point is the resonant frequency. The resonant frequency is the same
for a parallel circuit as for a series circuit, assuming the same com-
ponents are used in both. The calculations are exactly the same
in either case. The only difference is in the behavior of the circuit
as the resonant frequency.

We’ve already determined that resonant frequency for this par-
ticular combination of components is 876 Hz when the capacitive
reactance and the inductive reactance each equal approximately
826 ohms. Let’s see what happens to the impedance in this case:

Y/ N 27002 + [(826 x 826)/(826 - 826)F

J 7290000 + (682276/0%
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J 7290000 + o

Z = »

In a parallel circuit, the impedance is theoretically infinite at
resonance.

To summarize: in a series circuit, the impedance is at its mini-
mum value (R) at resonance, and in a parallel circuit, the impedance
is at its maximum value (o0) at resonance.

TRIGONOMETRIC FUNCTIONS

Many electronics calculations require basic trigonometric func-
tions. Essentially, trigonometry is nothing more than a set of rules
for defining relationships between angles and side lengths in tri-
angles. A triangle has only three sides and angles, so only a limited
number of combinations are possible.

We are primarily concerned with right triangles, which have
one 90 ° (right) angle. A typical right triangle is shown in Fig. 1-34.
The longest side (c) is called the hypotenuse. It is always directly
opposite the right angle. The length of the sides of a right triangle
always bear a specific mathematical relationship:

C=2a+1

This is true for all right triangles.

Fig. 1-34. Trigonometric functions
are defined as the relationships be-
tween various angles and side
lengths of a right triangle.
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Similarly, there are six basic relationships between the angles
and the side lengths. Each is given a specific name, as follows:

sine
cosine
tangent
arctangent
secant
cosecant

For angle A in Fig. 1-34, we can find the values for each of
these relationships:

sine A = b/c
cosine A = alc
tangent A = b/a
arctangent A = a/b
secant A = c/a
cosecant A = ¢/b

The same relationships hold true for angle B, except that sides
a and b are reversed:

sine A = alc
cosine A = b/c
tangent A = a/b
arctangent A = b/a
secant A = ¢/b
cosecant A = c/a

Notice that the B angle can be figured from A, because of the
following relationships:

sine B = cosine A

cosine B = sine A
tangent B = arctangent A
arctangent B = tangent A
secant B = cosecant A
cosecant B = secant A

In most practical electronics work, we will be working from
the angle, not side lengths of a hypothetical right triangle. There
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are mathematical equations for solving the trig functions of an an-
gle, but they are long and complicated. Generally, it is more prac-
tical to just use a standard trig table. A table of natural sines from
0 to 90 is given in Table 1-1. Table 1-2 lists cosines, and Table
1-3 lists tangents. These three functions are by far the most com-
monly encountered in electronics work. Arctangents, secants, and
cosecants are rarely used.

Most scientific calculators and computers also include trigono-
metric functions, so there won’t be many occasions when the cir-
cuit designer will have to perform these calculations for himself.
Usually a table, calculator, or computer will be available to do the
work.

LOGARITHMS

Some functions vary smoothly and evenly, giving us a nice
straight line when we try to graph them. Others tend to have many
values jammed together in one part of the scale, while other parts
of the scale have values that are widely spaced, as shown in Fig.

Table 1-1. Table of Natural Sines.

0--0.0000 25—0.4226 50—0.7660 75—0.9659
1—0.01756 26—0.4384 §1—0.7771 76—0.9703
2—0.0349 27—0.4540 6§2~0.7880 77—0.9744
3—0.0523 28—0.4695 53—0.7986 78—0.9781
4—0.0698 29—0.4848 54—0.8090 79—0.9816
6—0.0872 30—0.5000 55—0.8192 80—0.9848
6—0.1045 31-—0.5150 56—0.8290 81—0.9877
7—0.1219  32—0.5209 6§7--0.8387 82—0.9903
8—0.1392 33—0.5446 58—0.8480 83—0.9925
9—0.1564 34—0.5592 59—0.8572 84—0.9945

10—0.1736 35—0.5736 60—0.8660 85—0.9962

11—0.1908 36—0.5878 61-—0.8746 86—0.9976

12—0.2079 37—0.6018 62—0.8829 87--0.9986

13—0.2250 38—0.6157 63—0.8910 88—0.9994

14—0.24189 39—0.6293 64—0.8988 89—0.998

15—0.2588 40—0.6428 65—0.9063 90—1.000

16—0.2756 41—0.6561 66—0.9135

17--0.2924 42—0.6691 67—0.9205

18—0.3090 43—0.6820 68—0.9272

19—0.3256 44—0.6947 69—0.9336

20—0.3420 45—0.7071 70—0.9397

21—0.3584 46—0.7193 71-—0.9455

22—0.3746 47—0.7314 72—0.9511

23—0.3807 48—0.7431 73—0.9563

24—0.4067 49—0.7547 74—0.9613

47



Table 1-2. Table of Cosines.

0—1.0000 25—0.9063 50—0.6428 75—0.2588
1—0.9998 26—0.8988 51—0.6293 76—0.2419
2—0.9994 27—0.8910 52—0.6157 77—0.2250
3—0.9986 28—0.8829 53—0.6018 78—0.2079
4—0.9976 29—0.8746 54—0.5878 79—0.1908
6—0.9962 30—0.8660 656—0.5736 80—0.1736
6—0.9945 31—0.8572 56—0.5592 81—0.1564
7—0.9925 32—0.8480 57—0.5446 82—0.1392
8—0.9903 33-0.8387 58—0.5299 83—0.1219
9—0.9877 34—0.8290 59—0.5150 84—0.1045

10—-0.9848 35—0.8192 60—0.5000 85—0.0872

11—0.9816 36—0.8090 61—0.4848 86—0.0698

12—0.9781 37—0.7986 62—0.4695 87—0.0523

13—0.9744 38—0.7880 63—0.4540 88—0.0349

14—0.9703 39—0.7771 64—0.4384 89—0.0175

15—0.9659 40—0.7660 65—0.4226 90—0.0000

16—0.9613 41-0.7547 66—0.4067

17—0.9563 42—0.7431 67—0.3907

18—0.9511 43—0.7314 68—0.3746

19—0.9455 44—0.7193 69—0.3584

20—0.9397 45—0.7071 70—0.3420

21—0.9336 46—0.6947 71—0.3256

22—0.9272 47-—0.6820 72—0.3080

23—0.9205 48-0.6691 73—0.2924

24—0.9135 49—0.6561 74—0.2756

Table 1-3. Table of Tangents.

0—0.0000 25—0.4663 50—1.1918 75— 3.7321
1—0.0175 26—0.4877 51—1.2349 76— 4.0108
2—0.0349 27—0.5095 52—1.2799 77— 4.3315
3—0.0524 28-—0.5317 53—1.3270 78— 4.7046
4--0.0699 29—0.5543 54—1.3764 79— 5.1446
6—0.0875 30—0.5774 55—1.4281 80— 5.6713
6—0.1051 31—0.6009 56—1.4826 81— 6.3138
7—0.1228 32—0.6249 57-—1.5399 82— .1154
8—0.1405 33—0.6494 68—1.6003 83— 8.1443
9—0.1584 34—0.6745 59--1.6643 84— 9.5144

10—0.1763 35—0.7002 60—1.7321 85—11.43

11—0.1944 36—0.7265 61—1.8040 86—14.30

12—0.2126 37—0.7536 62—1.8807 87—19.08

13—0.2309 38—0.7813 63—1.9626 88—28.64

14—0.2493 39—0.8098 64—2.0503 89—57.29

15—0.2679 40—0.8391 66—2.1445 90—

16—0.2867 41—0.8693 66—2.2460

17—0.3057 42—0.9004 67--2.3559

18—0.3249 43—0.9325 68—2.4751

19—0.3443 44—0.9657 69—2.6051

20—0.3640 45—1.0000 70—2.7475

21—0.3839 46—1.0355 71—2.9042

22—0.4040 47—1.0724 72--3.0777

23—0.4225 48—1.1106 73—3.2709

24—0.4452 49--1.1504 74--3.4874
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1-35. This is a logarithmic function. Typical logarithmic functions
in electronics work include changes in acoustic volume and the
charging rate of a capacitor, among others.

Logarithmic functions can be treated like a linear function, but
the wide spread of values can leave you with a lot of numbers that
can be very awkward to work with. Working with these functions
using logarithms is much more convenient. Moreover, logarithms
can greatly simplify math when very large and/or very small num-
bers are involved. The old-fashioned slide rule worked on the prin-
ciple of logarithms.

The logarithm of any specific number is an exponent that indi-
cates the power to which the given base must be raised to equal
the given number. To clarify this, let’s try a simple example. Let’s
assume our logarithmic base is 10. This is often called the com-
mon logarithm. What if we needed to know the common logarithm

Fig. 1-35. Logarithmic functions are awkward if you try to graph them linearly.
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of 1000? We want to raise 10 by some unknown power to give us
1000. That is:

Log,, (1000) =
where 10* = 1000

This particular example is simple enough, because most of us
are well aware that 1000 is 10 cubed:

1000 = 10 x 10 x 10 = 10
So the common logarithm of 1000 is 3:
Log,, (1000) = 3

Solving a logarithm gets more complicated with values that are
not exact multiples of the base. For example:

Log,, (657) = 2.8175654

The math here can be fairly complex and tedious. Fortunately,
the odds are quite good that you will never have to perform any
such operations directly. As with the trigonometric functions de-
scribed earlier, logarithmic tables allow us to bypass most of the
busy-work. We can interpolate for values that fall between table
entries, or simply round off to the nearest table entry, depending
on the level of accuracy required in the specific application.

Scientific calculators and computers usually feature logarith-
mic functions. The slide rule can Stlll come in handy for solving
logarithmic problems.

Table 1-4 lists the common (base 10) logarithms for 2 number
of values. If you look over this table carefully, you should see cer-
tain patterns in the structure of the logarithms. Each logarithm con-
sists of two parts—the characteristic and the mantissa. The
characteristic is the portion of the number to the left of the deci-
mal point. Practical logarithm tables, like the one in Table 1-5,
generally give only the mantissa, because these values will repeat
for different characteristics, according to simple rules. For num-
bers from 1 to 9.9999, the characteristic will be 0. For numbers
greater than 0, the characteristic will be positive. For numbers less
than 1, the characteristic will be negative. Characteristics for com-
mon logarithms are summarized in Table 1-6.
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Table 1-4. Some Common Logarithms for Some Typical Values.

N log, N N log,, (N)

0 -00 40 1.6021

1 0.0000 45 1.6532

2 0.3010 50 1.6990

3 0.4771 55 1.7404

4 0.6021 60 1.7781

5 0.6990 65 1.8129

6 0.7782 70 1.8451

7 0.8451 75 1.8751

8 0.9031 80 1.9031

9 0.9542 85 1.9294

10 1.0000 80 1.9542

1 1.0414 95 1.9777

12 1.0792 100 2.0000

13 1.1139 110 2.0414

14 1.1461 120 2.0792

15 1.1761 130 2.1139

16 1.2041 140 2.14861

17 1.2304 150 2.1761

18 1.2553 160 2.2041

19 1.2787 170 2.2304

20 1.3010 180 2.2553

25 1.3979 190 2.2787

30 1.4771 200 2.3010

35 1.5441 300 24771

400 2.6021 500000 5.6990

500 2.6990 1000000 6.0000

600 2.7781 10000000 7.0000

700 2.8451 100000000 8.0000

800 2.9031 1000000000 9.0000

900 2.8542 10000000000 10.0000
1000 3.0000
2000 3.3010
3000 34771
4000 3.6021
5000 4.6990
6000 3.7781
7000 3.8451
8000 3.9031
9000 3.9542
10000 4.0000
20000 4.3010
30000 44771
40000 4.6021
50000 4.6990
60000 47781
70000 4.8451
80000 4.9031
90000 49542

100000 5.0000




Table 1-5. The Mantissa of a
Logarithm Is Taken from A Standard Log Table.

1.0 .0000 36 5563 6.2 .7924 8.8 .9445
1.1 .0414 37 5682 6.3 .7993 8.9 .9494
12 0792 38 5798 6.4 .8062 9.0 .9542
1.3 1139 39 .5911 6.5 .8129 9.1 .9590
1.4 1461 40 .6021 6.6 .8195 9.2 .9638
15 .1761 41 6128 6.7 .8261 9.3 .9685
1.6 .2041 42 6232 6.8 .8325 9.4 9731
17 2304 43 6335 69 .8388 9.5 9777
1.8 2668 44 6435 79 .8451 9.6 .9823
1.9 2787 45 6532 7.1 .8513 9.7 .9868
20 3010 46 6628 7.2 .8573 9.8 9912
21 3222 47 6721 73 .8633 9.9 .9956

22 3424 48 6812 74 .8692 10.0 1.0000
23 3617 49 6902 75 .8751
24 3802 5.0 6990 7.6 .8808
25 3979 51 7076 7.7 .8865
26 4150 52 .7160 7.8 .8921
27 4314 53 7243 79 8976
28 4472 54 7324 80 .903%
29 4624 55 7404 81 .9085
3.0 4771 66 7482 82 .9138
31 4914 57 7559 83 9191
3.2 .5051 58 7634 84 9243
33 5185 59 .7709 85 9294
34 5315 60 .7782 86 .9345
3.5 .5441 6.1 78563 87 .9395

To find the common logarithm for any decimal number, sim-
ply find the characteristic for the appropriate range from Table 1-6.
Then move the decimal point in the original number, until its value
is between 1 and 10, and find the mantissa in Table 1-5. Combine
your characteristic and mantissa, and there you have your common
logarithm.

For example:

Log (1700)
Notice that if no base is specified, common logarithms are gener-
ally assumed. This value (1700) is greater than 1000, but less than
10000, so the characteristic is 3.
Next, we move the decimal point, giving us:

1.700
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Looking up this value in Table 1-5, we find the mantissa should be:
.2304
Putting it all together, we find:
Log (1700) = 3.2304.

The common logarithm of any decimal value can be found with rela-
tive ease, using this method.

The common logarithm is not the only type of logarithm in regu-
lar use. Another common system of logarithms is the natural or
Napierian system. This system uses e as its base. The ¢ is a mathe-
matical constant with a value of approximately 2.718. As with =,
this awkward value corresponds directly to certain natural
phenomena, so natural logarithms are often very convenient to work
with. A table of natural logarithms is given in Table 1-7.

Natural logarithms are often written as:

In(N)
Table 1-6. Typical Characteristics for Logarithms Are Summarized Here.
Range Characteristic
0.0000000001 to 0.000000000999 -10
0.000000001 to 0.000000009999 -9
0.00000001 to 0.00000009999 -8
0.0000001 to 0.0000009999 -7
0.000001 to 0.000009999 -6
0.00001 to 0.00009999 -5
0.0001 to 0.0009999 -4
0.001 to 0.009999 -3
0.01 to 0.09999 -2
0.1 to 0.9999 -1
1 to 9.999 0
10 to 99.99 1
100 to 999.9 2
1000 to 9999 3
10000 to 99998 4
100000 to 999999 5
1000000 to 9999999 6
10000000 to 99999999 7
100000000 to 999999999 8
1000000000 to 9999999999 9
10000000000 to 99999999999 10
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Table 1-7. Natural Logarithms Are Used
Instead of Common Logarithms in Some Applications.

1.0 0.0000 3.6 1.2809 6.2 1.8245 8.8 2.1748
1.1 0.0953 3.7 1.3083 6.3 1.8405 8.9 2.1861
1.2 0.1823 3.8 1.3350 6.4 1.8563 9.0 2.1972
1.3 0.2624 3.9 1.3610 6.5 1.8718 9.1 2.2083
1.4 0.3365 4.0 1.3863 6.6 1.8871 9.2 2.2192
156 0.4055 4.1k 1.4110 6.7 1.9021 9.3 2.2300
1.6 0.4700 4.2 1.4351 6.8 1.9169 9.4 2.2407
1.7 0.5306 43 1.4586 6.9 19315 9.5 2.2513
1.8 0.5878 4.4 1.4816 7.0 1.9459 9.6 2.2618
18 0.6419 4.5 1.5041 71  1.9601 9.7 2.2721
2.0 0.6931 4.6 1.5261 72 1.9741 9.8 2.2824
21 0.7419 4.7 1.5476 73 19879 9.9 2.2925
22 0.7885 4.8 1.5686 74 20015 10.0 2.3026

23 0.8329 4.9 1.5892 75 20149
24 08755 5.0 1.6094 7.6 2.0281
25 0.9163 5.1 1.6202 7.7 20412
26 0.9555 5.2 1.6487 78 2.0541
2.7 0.9933 5.3 1.6677 7.9 2.0669
28 1.0296 5.4 1.6864 8.0 2.0794
29 1.0647 5.5 1.7047 8.1 2.0919
3.0 1.0086 5.6 1.7228 8.2 21041
3.1 11314 5.7 1.7405 8.3 21163
3.2 1.1632 5.8 1.7579 84 21282
3.3 1.1939 5.9 1.7750 8.5 2.1401
3.4 1.2238 6.0 1.7918 8.6 21518
3.5 1.2628 6.1 1.8083 8.7 2.1633

where N is the original number.

Antilogarithms

The reverse of a logarithm is an antilogarithm. Here we start
out with a logarithmic value and convert it to a decimal number.
Antilogarithms are usually written in this form:

Antilog (N)
You may occasionally see it notated like this:
Log-' (N)
Once again, the most convenient approach is to use a Log ta-

ble. This time we use the second (log) column to look up the given
mantissa, and read the results in the first (value) column. If the
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characteristic has a nonzero value, we just need to add one more
step:

Antilog (C.mmmm) = N x B

where C is the characteristic. .mmmm is the mantissa, B is the sys-
tem base (assumed to be 10 (common) if unspecified), and N is the
value found in the Log table.

Combining Logarithms

Now let’s put out logarithms and antilogarithms to work, and
find out why they are so useful. Let’s say we need to find the prod-
uct of:

450000000 x 7800000000

Numbers in this range can be awkward to work with. It’s all too
easy to make a mistake in the number of zeros, throwing the re-
sult off by a considerable amount. An interesting mathematical rela-
tionship among logarithms provides a more convenient solution:

Log(A x B) = Log(A) + Log(B)

To find a product of any two numbers, we can add their in-
dividual logarithms. This gives the logarithm of the product. So,
taking the antilogarithm gives us the direct result. This is the way
multiplication is done on a slide rule. Let’s work through our
example:

Log(450000000) = 8.6532
Log(7800000000) = 9.8921

8.6532 + 9.8921 = 18.5453

Antilog (18.5453) = 3.51 x 10 = 3510000000000000000

This technique also comes in handy for combining very large
numbers with very small numbers. For example:

63000000 x 0.000084

Log(63000000) = 7.79993

Log(0.000084) = -5.9243

7.7993 + (-5.9243) = 7.7993 - 5.9243 = -1.8750
Antilog (1.8750) = 7.5 x 10 = 75
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The same kind of thing can work for division too, except we
subtract instead of add the logarithm values:

Log(A/B) = Log(A) - Log(B)

Another useful application is in raising a value to a specific
power. For example:

245
You could just manually muitiply it out:
24 x 24 x 24 x 24 x 24

That’s quite tedious at best, and it’s very easy to make a mistake
somewhere along the line. With logarithms, you can use this ap-
proach:

Log(AB) = B x Log(A)
For our example of 245, this works out to:

5 x Log(24) = 5 x 1.3802 = 6.9010
Antilog (6.9010) = 7.96 x 10° = 7960000

Actually, 245 equals 7962624. The difference is due to rounding
off values in the logarithmic method and interpolating between Log
table entries. In this case, the total error worked out to be just
slightly over 0.03%, which should be accurate enough for most prac:
tical applications.

Extracting roots is a particularly tough task for standard
mathematics. It can be done, but the calculations are complex and
time consuming. For example, how long would it take you to solve
for the fourth root of 22?

422

Logarithms simplify the problem to one of straightforward division,
which can be further reduced to simple subtraction. The logarith-
mic formula for root extraction is:

Log( 4/ B) = Log(BYA
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So, for our sample problem:
Log(¥/22) = Log(22)/4 = 1.3424/4

We could now go ahead and divide directly. But remember,
logarithms allow us to reduce division to subtraction, so:

Log(1.3424/4) = Log(1.3424) - Log(4)
Log(1.3424) = 0.1271

Log 4 = 0.6021

0.1271 - 0.6021 = -0.4750

Antilog (-0.4750) = 0.3350

We just need to take the antilog of this value to find the fourth
root of 22:

Antilog(0.3350) = 2.26

According to my scientific calculator, the fourth root of 22 is
2.1657368. The logarithmic method brought us very close, with
a minimum of math.

If you have a scientific calculator or computer with the appropri-
ate functions handy, you won’t need to resort to logarithms to solve
such problems because they can be solved directly by the machine.

Many of the values you will encounter in electronic design work
will be logarithmic form, so you should be familiar with logarithms
and antilogarithms, even if you don’t use them to solve the types
of problems described in this section.

Decibels

Many phenomena in nature and electronics conform to a
logarithmic, rather than a linear scale. This makes direct compari-
sons between values somewhat difficult. One solution to this prob-
lem was the development of the decibel (dB) system. A decibel is
actually one-tenth of a bel (B), but a bel is too large a unit to be
practical for our purposes, so we work only with decibels.

The decibel system is a logarithmic method of comparing two
values (powers, voltages, currents, or whatever). Decibels are fre-
quently used in audio equipment, such as amplifiers, because our
ears happen to perceive acoustic volume logarithmically, rather than
linearly. A difference of 6 dB represents an approximate doubling
of volume. A 1 dB difference would be almost imperceptible.
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The formula for converting two powers to dB form is:
dB = 10 x Log(P,/P)

where P1 and P2 are the powers to be compared, and dB is the
comparison factor in decibels. If the result is positive, P, is larger
than P,. If the result is negative, P, is larger than P,.

Advertisements for audio amplifiers frequently emphasize the
power ratings of the equipment. You'd think that a 50-watt ampli-
fier would offer a considerable advantage over a 20-watt amplifier.
But what is the real difference in decibels?

dB = 10 x Log(50/20) = 10 x Log(2.5)

10 x 0.3979 = 3.979, or about 4 dB

There hasn’t even been a doubling of power.

Decibels can also be used to indicate voltage gain (the increase
in amplitude from the input signal to the output signal). The for-
mula is:

dB = 20 x Log(E/E,)

where E is the output voltage, and E, is the input voltage.

This calculation assumes that the input and output impedances
are equal. If this is not the case, the formula should be changed
to look like this:

dB = 20 x Log [(E, x ZJE, x Z)]

It is important to remember that the decibel is a comparative,
not an absolute value. An expression like, ‘‘the amplitude of that
sound is 37 dB”’, is meaningless unless we know what it is being
referenced to. In other words, we need to define the 0 dB point.
Generally, in electronic equipment if no reference level is identi-
fied, a standard reference level of 6 millivolts (0.006 vol) across
a 600-ohm impedance is assumed.

LAPLACE TRANSFORMS

Using the mathematical tools described so far in this chapter,
we can analyze pretty thoroughly what is going on in a circuit if
the signal flowing through it is a dc voltage or an ac sine wave.
Unfortunately, many circuits we’ll be dealing with in the real world
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are not so cooperative. The current flowing through many circuits
varies with time, complicating the task of analysis greatly.

Even with a fairly simple dc circuit, like the one shown in Fig.
1-36, we sometimes have to concern ourselves with voltages and
currents that change over time. When the switch is in position A,
the circuit effectively functions like the one shown in Fig. 1-37.
Moving the switch to position B changes the effective circuit to
the one illustrated in Fig. 1-38. These changes in the circuitry must
alter the voltages and currents flowing through the components in
some way.

Circuits with changing conditions can be analyzed by using
Laplace transforms. Once the correct transforms have been found,
they can be substituted for the actual circuit values in Kirchhoff
equations. The result is then converted into a meaningful value by
using a transform table.

There are three major factors to be considered—the circuit ele-
ments and their transforms, the initial conditions within the circuit
at time 0 (if appropriate), and the time-varying voltages and cur-
rents and their transforms.

R3

L1

-

Fig. 1-36. Even in very simple dc circuits, we often have to be concerned with
voltages and currents that change with time.
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+
B1—

i

Fig. 1-37. When the switch in Fig. 1-36 is in position A, the effective circuit
looks like this.

There are three types of passive components:

O resistors
O inductors (coils)
O capacitors

R5 R6
VVv 1 VVV
R2
R4 L2
R3 é =C1 =aC2
L1

Fig. 1-38. When the switch in Fig. 1-36 is in position B, the effective circuit
looks like this.
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For a resistor, the Laplace transform is simply the value of that
resistor in ohms. There is no time-varying aspect. The Laplace
transform for a 2700-ohm resistor, for example, is 2700. With in-
ductors and capacitors, we have to start working with a Laplace
operator. It is represented in the equations as s. The Laplace trans-
form of an inductor is the inductance multiplied by s:

sl

The Laplace transform for a capacitor is the reciprocal of the
capacitance (in farads) multiplied by s:

1/sC

Consider the circuit illustrated in Fig. 1-39. At time t =0, the
switch is moved from position A to position B. Before t = 0, there
was a voltage across the capacitor, and a current through the in-
ductor, because there was a complete current path, powered by
B1. In this case, the initial conditions of the circuit parameters are
certainly of importance.

The initial condition transform for a voltage across a capacitor
may be expressed as:

E /s
A
R2
N————— " V—

—0

B
i b
BI=

- —__1 L ==C
—-B2
—_VV
R1

Fig. 1-39. This circuit is used for the Laplace transform example described
in the text.
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where E_ is the voltage across the capacitor at t=0. Interestingly,
the value of the capacitor is completely irrelevant to this initial con-
dition transform, so there is no C value here.

For the current flowing through an inductor, the initial condi-
tion transform is written as:

LI,
where L is the inductance in henries, and I is the current flow-
ing at time t=0. Notice that there is no s expression in this trans-
form. For purposes of analysis, both of these transforms may be
considered as voltage sources. This concept is illustrated in Fig.
1-40.

A time functions consists of a coefficient and a function of time.
For example, 7¢% is a time function in which the coefficient is 7,
and the function of time is e*. For a second example, 8sine(5t)
breaks down to a coefficient of 8, and a time function equal to
sine(5t). The Laplace transform of any time-varying function is
equal to the coefficient of that function multiplied by the function’s
transform.

The simplest possible function is 1 (or unit step). This func-
tion is applicable to a circuit that initially has no voltage current

R2

\ A A4

sL —
L

Ll g
s

VYV
R1

Fig. 1-40. Some of the components in the circuit of Fig. 1-39 are redrawn here
as voltage sources for purposes of analysis.
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Table 1-8. Common Laplace Transforms.

Time Function Laplace Transform
1 (unit step) 1/s
t (ramp) 1/¢?
e* 1/(s-a)
e 1/(s +a)
te® 1/(s-a)?
te~® 1/(s +a)?
1-e® —-als(s-a)
1w sin ot 1(s? + &)
cos wt sl(s? + «d)
1-cos wt o Is(s? + )

flowing through it. At time t=0 a switch is closed, connecting a
battery or other dc voltage source to the circuit. In this case the
transform is:

1/s

Another simple function is the ramp. This is where the volt-
age starts zero at t=0, then increases linearly with time. In this
case, the transform is:

1/s

Additional common time functions and their transforms are
given in Table 1-8. A few of the entries may require a little expla-
nation for many readers.

The letter ¢ is a mathematical constant like «. In this case, ¢
is the base of the natural logarithm system (discussed earlier). The
approximate value of e is about 2.718.

The term (n-1)! indicates a factorial operation. A factorial is
obtained by multiplying the given integer (n-1, in this case) by
each lower integer down to 1. That may be a bit confusing, so I
will give an example. We will sayn = 6, so(n ~ 1) = 5. There-
fore, m-1)!=:

51=5x4x3x2x1=120

The next term in the table that may be unfamiliar is y. This
symbol is used to represent radians-per-second. The radius (r) of
a circle is the length from the center to the edge. The circumfer-
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ence (distance around the outside) of a circle is always equal to 2
x r. Now, imagine cutting out a segment of a circle so that the por-
tion of the circumference included in the segment is equal to the
radius (r). We then draw two radii from the ends of the circumfer-
ence segment back to the circle’s center. The two radii will form
a specific angle which is equal to one radian. A complete circle,
by definition, contains 2 x radians.

Radians-per-second is a function of frequency. The formula is:

v=2xF

where F is the frequency in hertz. The constant value 2 = is ap-
proximately equal to 6.28.

Returning to the table, the symbol ¢ represents a phase angle.
If, for instance, a signal is 34 ° out-of-phase with a given reference,
¢ would be equal to 34.

While not included in this table, perhaps we should also men-
tion the imaginary operator j, which is equal to the square root of
-1

j=V-1
No real number will fulfill the condition:
NxN= -1

so j is said to be imaginary. But it can have a very real effect in
many calculations.

Now that we know some of the most commonly used Laplace
transforms, what do we do with them? Once we have the correct
transforms for the various circuit elements, and have defined the
initial conditions and driving functions, we can apply Kirchhoff’s
laws, just as we did with the dc circuits described earlier in this
chapter.

To find the time-varying voltages and currents, it is necessary
to rearrange the results of the Kirchhoff equations algebraically
until they resemble one of the transforms in our table. Then we
simply convert to find the results.

As an example of the use of Laplace transforms, let’s consider
the simple circuit shown in Fig. 1-41. We will assume the follow-
ing component values:
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B1

=z
(@]

Fig. 1-41. This circuit is used for the second Laplace transform example de-
scribed in the text.

El = 6 volts
R = 2200 ohms
C = 10 uF (0.00001 farad)

The switch is closed at time t = 0. The circuit is redrawn in Fig.
1-42 to show the Laplace transforms of the circuit elements. The
Laplace transform of the resistor is simply equal to the resistance
(2200). The Laplace transform for the capacitor works out to:

1/sC = 1/(s x 0.00001) = 100000/s
The Laplace transform for the voltage source (E1) is:

6/s

2 _L_10000
s Ts

2200

Fig. 1-42. At time t =0, the circuit from Fig. 1-41 functions as if it looked like this.
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We can combine these transforms into a form analogous to
Ohm'’s law (E =IR):

6/s = T x (2200 + (100000/s)

Rearranging to solve for I, we get:

|

(6/s)/12200 + (100000/s)]
6/(2200s + 100000)
0.0027/(s + 45.4545)

0.0027 x [1/(s + 45.4545)]

This closely resembles the second transform in the table:
/s + a)

with 0.0027 as the coefficient.
According to the table, the function for this particular trans-
form is:

e-at

The variable @ holds it’s original value (45.4545 in this case),
so the total current flow in this circuit works out to:

I =0.0027 x e

Virtually any time-varying voltage or current in almost any cir-
cuit can be determined by using Laplace transforms.

SUMMARY

A lot of math has been presented in this chapter. If you have
previous experience in circuit design, at least some of the formulas
discussed here should be familiar to you. If you are confused by
any of the calculations described in this chapter, you needn’t be
too concerned. They will get easier the more you use them. You
won’t need to use them all for every circuit design application.
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Chapter 2

Digital Basics

OST OF THE CIRCUITRY WE WILL BE DEALING WITH IN

this book is digital. Digital circuitry can get very compli-
cated in advanced applications, but it can always be broken down
to fairly simply modules. Digital circuit design is almost a matter
of combining modules in building-block fashion.

A digital signal may have only one of two possible states. Ei-
ther the signal voltage is low, or it is high. No intermediate values
are possible. Several names are used to describe digital signals,
but they all mean exactly the same thing:

Low High
0 1
Off On
No Yes

NUMBER SYSTEMS

Digital electronics uses what is called the binary number sys-
tem, because there are two possible digits—0 and 1. We are more
familiar with the decimal system, which has ten digits:

01234561789

In the decimal system, if we need to express a value larger than
the largest available digit (9), we add a second column. For exam-
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ple, twenty-seven is written as 27, or (2 x 10) + (7 x 1). This can
be extended for as many columns as needed. For example:

3658 = (3 x 10 x 10 x 10) + (6 x 10 x 10) + (5 x 10)
+ @8 x1)

Each new column to the left is raised to the next power of ten.
The binary system works in the same way, except each column
is raised to a power of two. For example:

11011 = (1 x2x2x2x2)+(1x2x2x2)+(0x
2x2)+(1x2+1x1)=16+8+0+2+1=27

The binary system is very awkward for human beings to work
with, but it is very easy for machines (such as computers) because
each digit may only be one or the other of two very unambigous
values.

Compromise number systems are also available. One is the oc-
tal (base 8) system. If we break binary numbers into groups of three
digits, eight values can be expressed:

Binary Decimal
000
001
010
011
100
101
110
111

NG W -=O

This makes the reading of large binary numbers more convenient
for human beings. As an example, consider this binary number:

110011010001

It would be all too easy to make a mistake in copying a binary num-
ber like this. But if we break it up into octal chunks, it is much
easier to conceptualize:

110 011 010 001
6 3 2 1
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A similar numbering system is the hexadecimal system. This sys-
tem has a base of sixteen. We run into a problem right away. The
hexadecimal system requires 16 different digits, but we only know
how to write ten. The solution is to use the letters A through F
to represent values from eleven to fifteen.

Binary numbers are converted into hexadecimal by breaking
up the digits into groups of four. Things become clearer when we
compare binary, decimal, and hexadecimal values:

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Converting the same large binary number from our earlier ex-
ample to hexadecimal, we get:

1100 1101 0001
9 A 1

BCD

Octal and hexadecimal numbers are a step up from the straight
binary system. But we are used to using the decimal system, and
it would be nice if we could get our electronic machinery to cooper-
ate. Circuitry to perform the necessary conversion between num-
ber systems is called BCD or binary-coded-decimal.

To cover all the decimal digits from 0 to 9, we need at least
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four binary digits. Unfortunately, there are six extra combinations.
These values are meaningless in a BCD system. These extra com-
binations are disallowed:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010 disallowed
1011 disallowed
1100 disallowed
1101 disallowed
1110 disallowed
1111 disallowed

C O W -=O

THE GATE

The heart of all digital circuitry is the gate. A gate is a circuit
that accepts one or more digital input signals and puts out one or
more digital output signals. The output values are determined by
the input values.

Digital gate circuits are almost always in IC form, either as
packages of simple gates, or as complex combinations of gating
circuits in a single package.

The simplest possible digital gate would have a single input
and a single output. There are four possible combinations:

Input Output

A 0 0
1 0
B 0 0
1 1
C 0 1
1 0
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Input 'l> Output

Fig. 2-1. The output of a buffer gate is the same as its input.

D 0 1
1 1

A chart of the input and output combinations for a specific gate
is called a truth table, or logic table.

A and D are clearly worthless as gates, because the output is
constant. The input has no effect on the output. Simple hardwir-
ing can be used in place of a gate circuit to achieve the same effect.

B might also look worthless, since the output is always the same
as the input. Why not just use the input signal? Each digital signal
(output from a previous gate) can drive just so many gate inputs.
If we need to drive more inputs, we can add a gate of this type,
called a buffer, to increase the *‘strength’ of the output. The digi-
tal buffer gate is very similar in function to the analog buffer (unity
gain) amplifier. The symbol used in schematic diagrams to repre-
sent buffer gates is shown in Fig. 2-1.

The pattern exhibited by gate C is probably the most useful
signal input/single output gate. The output is the opposite of the
input. This gate is called, not surprisingly, an inverter. It is also
occasionally referred to as a NOT gate. The schematic symbol for
this device is shown in Fig. 2-2. Notice that it is the same as the
symbol for a buffer, except for the addition of a small circle at the
output. In digital circuit diagrams, a small circle always indicates
inversion.

Single input/single output gates are of limited value by them-
selves. Much more versatility is possible with multiple input gates.
With two inputs and one output, there are sixteen possible combi-

Input Output

Fig. 2-2. The output of an inverter is the opposite of its input.
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Inputs Output

Fig. 2-3. The output of an AND gate is HIGH if, and only if, all of its inputs are
HIGH.

nations. Several are trivial, or pointless. Some of the most com-
monly useful combinations are available in standard combinations.
Consider this combination:

Input A Input B Output
0 0 0
0 1 0
1 0 0
1 1 1

The output of this gate is a 1 if, and only if, both inputs (A AND
B) are 1's. If either A or B (or both) is a 0, the output will be a
zero. This is called an AND gate. The symbol is shown in Fig. 2-3.

If we add an inverter to the output, as shown in Fig. 2-4, the
output pattern will be reversed:

Input A Input B Output
0 0 1
0 1 1
1 0 1
1 1 0

This time the output is a 1 if A and B are NOT both 1’s. This is

A Out Out
Inputs

Fig. 2-4. Adding an inverter to the output of an AND gate Creates a NAND gate.
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Inputs - Output

Fig. 2-5. This is the schematic symbol for a standard NAND gate.

called a NOT-AND gate, or a NAND gate. The NAND gate is proba-
bly the most commonly used type of gate in digital circuitry. It is
usually represented by the symbol shown in Fig. 2-5.

Another common type of gate is the OR gate. As the name sug-
gests, the output is a 1 if input A is a 1 OR if input B is a 1. The
truth table is as follows:

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 1

The schematic symbol for an OR gate is shown in Fig. 2-6.

As with the AND gate, the output of the OR gate is often in-
verted to create the NOR gate. The schematic symbol is illustrated
in Fig. 2-7, and the truth table is as follows:

Input A Input B Output
0 0 0
0 1 0
1 0 0
1 1 1

The output is a 1 if, and only if neither A NOR B is a 1.

Out

Fig. 2-6. Another commonly used digital gate is the oR gate.
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Out

Out

Fig. 2-7. A NoR gate is an OR gate with an inverted output.

Another variation on the basic OR gate is the Exclusive-OR gate.
This is often shortened to X-OR gate. Here is the truth table:

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 0

The output is a 1 if, and only if one input is a 1. If both inputs are
1’s (or if both are 0’s) the output will be 0. The X-OR gate may also
be called a digital difference detector. The schematic symbol for
this type of gate is shown in Fig. 2-8.

Any of the basic two input gates may be easily expanded to
allow three or more inputs. For example, here is a truth table for
a three input AND gate.

Inputs Output

HHRrH~OOOOP
MO O~MMOOm
HOHORHOHOEA
HOOOOOOO
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Similarly, a three input X-OR gate would exhibit this logic
pattern:

Inputs Output

—H—m_-—_-O O OO P
H—OOKHHOOW
HOMOMROROA
—_-O OO MO

Simple gates can be combined to create more complex gating
patterns. For example, the circuit shown in Fig. 2-9 has four in-
puts and two outputs. The truth table for this circuit is:

Inputs Outputs
ABCD XY
0000 01
0001 00
0010 00
0011 11
0100 00
0101 00
0110 01
0111 10
1000 10
1001 01
1010 00
1011 00

L

Out

|

Fig. 2-8. A variation on the basic or gate is the Exclusive-OR (or x-OR} gate.
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Fig. 2-9. Simple gates can be combined to create more complex gating patterns.

Inputs Output
1100 11
1101 10
1110 10
1111 01

Any desired logic combination can be built up from a collec-
tion of basic digital gates. In most cases there are several possible
approaches.

THE MULTIVIBRATOR
Most digital signals originate from some sort of multivibrator
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circuit. A multivibrator is a pulse wave generator. There are three
basic types:

O Monostable
O Bistable
[3J Astable

Each of these is extremely useful for various tasks.

The Monostable Multivibrator

The monostable multivibrator has one stable state. When it
receives an input pulse it temporarily snaps to the opposite logic
state for a fixed period, then returns to its original stable state. In
other words, there is one output pulse for each input pulse, as shown
in Fig. 2-10.

The primary advantage of the monostable multivibrator is that
the output pulse is always a specific length, regardless of the length
of the input pulse. Generally this type of circuit is used to lengthen
brief signal pulses. For this reason, the monostable multivibrator
is often called a pulse stretcher.

] ]

Trigger

Output

Fig. 2-10. A monostable muitivibrator can be momentarily forced out of its sin-
gle stable state by an input pulse.
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The Bistable Muitivibrator

The second type of multivibrator is the bistable. As the name
suggests this circuit has two stable output states. It can remain in
either state indefinitely. Each time an input pulse is received, the
output reverse states. The action of a bistable multivibrator is il-
lustrated in Fig. 2-11.

In a way, a bistable multivibrator is a form of one bit memory
(see Chapter 4). It ‘““‘remembers”’ its last state. Bistable multivibra-
tors are also called flip-flops for reasons which should be fairly
obvious.

The Astable Multivibrator

The third type of multivibrator is the astable multivibrator,
which has no stable states. Its output switches continuously back
and forth between the two possible output states, as shown in Fig.

Trigger

Output

Fig. 2-11. A bistable switches between its two stable output states each time
an input pulse is received.
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Output

Fig. 2-12. An astable multivibrator switches continually back and forth between
two unstable states.

2-12. In other words, the astable multivibrator is a rectangle wave
generator.

COUNTERS

A binary counter can be created by stringing together several
flip-flops, as shown in Fig. 2-13. The output of the first flip-flop
(A) triggers the second (B), which triggers the third (C), which trig-
gers the fourth (D).

The action of this circuit is outlined in Table 2-1. Note how
the outputs count in binary from 0000 to 1111 (decimal 15), then
the cycle is repeated. This is a sixteen-step, or modulo-sixteen
counter.

Each time we add another stage to the counter, the modulo in-
creases to the next power of two. For example:

3 stages modulo-8
4 stages modulo-16
Output  Output  Output Qutput
A B8 C D
To
Clock _Jc aH4c aH-4c aHHc a additional
in _ ' : stages
Flipflop Flip-flop Flip-flop Flip-flop
1 2 3 4

Fig. 2-13. A binary counter can be created from a string of flip-flops.
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Table 2-1. Summary of The Action
of The Counter Circuit Shown in Fig. 2-13.

Clock Outputs
Puise
D (o B A
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
1 1 0 1 1
12 1 1 0 ]
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
16 0 0 0 0 (Counter resets)
17 0 0 0 1
18 0 0 1 0
19 0 0 1 1
20 ] 1 0 0
and so forth . . .
5 stages modulo-32
6 stages modulo-64
7 stages modulo-128
8 stages modulo-256
and so forth.

What if we need a counter with a modulo that is not a power
of two? For example, let’s say we need a counter with a modulo
of six. The desired count pattern would look like this:

000
001
010
011
100
101
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000
001
010

and so on.

Most flip-flops have a clear (or R or RESET) input that can force
the output back to logic 0. By using some digital gates, we can force
the flip-flops to clear after a specific count value has been reached.

We start out with a simple counter with a modulo equal to the
next higher power of two. In our example (six), we need a modulo-
eight (three stage) counter, as shown in Fig. 2-14. Ordinarily, the
output count pattern of this circuit will look like this:

000
001
010
011
100
101
110
111
000
001
010

and so on.

Clock

Fig. 2-14. A modulo-eight counter is made from three fiip-flop stages.
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For our modulo-six counter we want the count sequence to reset
to 000 after 101. That is:

oWy
—

We can get the result we want by ANDing together outputs A
and C and feeding this signal back to the RESET input(s), as illus-
trated in Fig. 2-15. Note that output B doesn’t matter in the gat-
ing, since the count of 111 can never be reached. If A and C are
1’s, B must be a 0. By using the proper combination of gates, liter-
ally any whole number modulo can be achieved.

In most practical circuits, you won’t have to work with in-
dividual flip-flop stages. Full counter circuits are available in IC
form.

Some IC counters are designed to count out in a somewhat
different manner than described here. As an example, we will con-
sider the CD4017 counter/divider chip, which is a CMOS device.
The pinout diagram for this IC is shown in Fig. 2-16.

This IC has ten outputs numbered from 0 to 9. On any specific
count, only one of the inputs is high (logic 1), and the other nine
will be low (logic 0). We can simulate this approach with flip-flops
and gates, as illustrated in Fig. 2-17. Only one output can be a 1
at any time.

A 4 1’—'D—

fo I
D
o U

D Q
C R
I

Clock

Fig. 2-15. A modulo-six counter resets itself after a count of five.
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Output 6 | 1 I—I 16 ] Voo
Qutput 1 | 2 | 15 | Reset
Output 0 | 3 14 | Clock
Output 2 | 4 13 | Clock enable
Output6 | 5 12 | Carry out
Output 7 | 6 11} Output 9
Output 3 | 7 ‘ 10 { Output 4
(g._zf; d) 9 | Output 8

Fig. 2-16. The CD4017 is a dedicated counter/divider chip.

Clock

Fig. 2-17. This circuit simulates the operation of the CD4017.
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By grounding pin 15 of CD4017 and connecting pin 13 to one
of the outputs, the counter will count from 0 to that output’s value,
and then stop. If the connections to pins 13 and 15 are reversed,
the counter will put out a repeating cycle. Once the maximum count
has been passed, the count goes back to 0 and starts over. Multi-
ple CD4017s can be cascaded for counts higher than 9.

SHIFT REGISTERS

Another popular type of digital circuit is the shift register, which
is closely related to the digital counters discussed in the last sec-
tion. A binary number is entered into a shift register, then it can
be shifted place-by-place in either direction, depending on the
specific design.

The action of a shift register may be made a little clearer with
an example. Let’s say we enter the binary number 01011001. Some
shift registers will shift the digits one place to the left on each in-
coming clock pulse. The newly opened spaces on the right are filled
with 0’s. Digits shifted out of the left-most column are lost. In this
case, the shift sequence will look like this:

Clock Pulse # Number

01011001  (original number)
10110010

01100100

11001000

10010000

00100000

01000000

10000000

00000000  (The register is
00000000 cleared, so no
10 00000000 further changes
11 00000000  will take place.)
12 00000000

OO WN=O

Other shift register circuits will loop around the exiting left-
most digit to the right-most column, causing the digits to cycle
through each position, like this:
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Clock Pulse # Number

01011001  (original number)
10110010

01100101

11001010

10010101

00101011

01010110

10101100

01011001  (The original
10110010 number again.)
10 01100101

11 11001010

12 10010101

OO IDMN e WN ~O

In this case, the pattern will be repeated indefinitely.

There are also shift register circuits which shift the digits to
the right instead of the left. For example, a shift to the right and
clear shift register would exhibit the following pattern:

Clock Pulse # Number

01011001  (original number)
00101100

00010110

00001011

00000101

00000010

00000001

00000000

00000000  (The shift
00000000 register is
10 00000000 now cleared.)
11 00000000

12 00000000

OO WD ~=O

Finally, for a shift register with a right shift and recycle:
Clock Pulse # Number

0 01011001  (original number)
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Clock Pulse # Number
1 10101100

2 01010110

3 00101011

4 10010101

5 11001010

6 01100101

7 10110010

8 01011001  (The original
9 10101100 number again.)
10 01010110

11 00101011

12 10010101

Once again, this pattern will repeat indefinitely. .

The digits may be entered or read out of the shift register ei-
ther serially (one digit at a time) or parallelly (all digits simultane-
ously), depending on the design of the circuit. There are four
possible combinations:

O SISO  Serial In/Serial Out

O SIPO  Serial In/Parallel Out
{0 PISO  Parallel In/Serial Out
O PIPO  Parallel In/Parallel Out

Shift register applications include short term memories, digi-
tal delays, and mathematical operators. A left shift performs bi-
nary multiplication, and a shift right performs binary division.

MULTIPLEXERS AND DEMULTIPLEXERS

In some complex digital systems we will need one signal at a
given point in the circuit part of the time, but other signals will
be needed at other times. To build such a system, we obviously
need some way to select between two or more possible inputs. A
specialized digital subcircuit that has been developed for just this
purpose is a multiplexer, or MUX for short.

Figure 2-18 shows how a simple muiltiplexer can be made from
several NAND gates. This circuit has four data inputs (1 through
4), and two control inputs (A and B). The logic signals fed to the
control inputs determine which of the data input signals will reach
the output. Only one of the data inputs is active at any one time.
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Out

Fig. 2-18. The simple multiplexer can be constructed from several NAND gates.

The truth table for this circuit is as follows:

Control
Inputs

A

-0 O OO

B

OO =0 O

Data

Inputs

1234

I I R =)
MMM M= O M N
I I =T I I

O M M MK KN

Output

—_-O O O MO

where “x”’ represents ‘‘don’t care.” Notice how only one of the data
input lines is of significance for any combination of values at the

control inputs (A and B).
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Because the control inputs can be used to select any of the data
inputs to reach the output, this type of circuit is occasionally called
a data selector, although multiplexer is the preferred name.

The multiplexer shown in Fig. 2-18 is a 1-of-4 multiplexer, be-
cause any one of four data lines may be selected. The same princi-
ple is commonly expanded to form 1-o0f-8 or 1-0f-16 multiplexers.
Multiplexers in all three of these sizes are readily available in IC
form. Figure 2-19 shows the pinout diagram for the 74150, which
is a typical 1-of-16 multiplexer IC.

Some multiplexer ICs invert the data signal at the output. In
other words, the output will be the opposite of the selected data
line. Multiplexers can take the place of complex gating circuits.
For example, consider this truth table:

Inputs Output

HD—‘HHHHD—‘D—‘OOOOOOOO>
= EHO OO MMM NOOoOOOm
Hre OOMMHOOMHMODOMMOOON
HOHOHOHOHOHOHOHOU
O OO HMHMHEHOQOQOMEMmOOROO

It would be inconvenient at best to generate this truth table
with simple gates. Figure 2-20 shows how this truth table may be
generated by a 74150 1-of-16 multiplexer IC.

A 1-0f-16 multiplexer can generate 216 different truth tables.
In other words, there are 65,536 possible combinations of inputs
and outputs.

A multiplexer can also come in very handy when unusual count-
ing sequences are required. For example, combining the circuit of
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Ground |12

24| Vce
23| Data input 8

221 Data input 9

E Data input 10

20| Data input 11
E Data input 12
18 | Data input 13
17 ] Data input 14
16 | Data input 15
15 | Control input A
E Control input B

E Control input C

Fig. 2-19. The 74150 is a dedicated 1-0f-16 multiplexer chip.

Fig. 2-20 with a four-stage modulo-sixteen counter, as shown in
Fig. 2-21 would generate the following output sequence:

Clock
Pulse #

UL W =O

Counter
Outputs

0000
0001
0010
0011
0100
0101

Output

-0 0o HOO
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Controi
inputs

D C B A

v T

11 13 14 15
1
4 10 pee——=O Output
5
7 9
4150
8 7415
12
16
18 /777
19
23
2 3 6 17 20 21 22

777

Fig. 2-20. A multiplexer can be used to generate unusual truth tables.

Clock Counter Output
Pulse # Outputs
6 0110 1
7 0111 0
8 1000 0
9 1001 1
10 1010 1
11 1011 1
12 1100 0
13 1101 0
14 1110 1
15 1111 0
16 0000 0 (The pattern
17 0001 0 repeats.)
18 0010 1
19 0011 0
20 0100 0
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and so on. Any pattern of binary digits can easily be generated us-
ing this method. Multiplexers are also used for keyboard scanning
applications.

The opposite of a multiplexer is a demultiplexer of DEMUX.
The control inputs of a demultiplexer determine which of several
output lines will be activated by the single data input line. A typi-
cal demultiplexer IC is the 74154 1-0f-16 demultiplexer, which is
illustrated in Fig. 2-22.

A
Binary B8
counter C
D
11 13 14 15
Clock 9
8 10 = Output
7
6
5
Switches 4 74150
for 3
data 2
inputs
(gnd 1
or 23
Vece) 22
21
20
19
18
17
16
12

Fig. 2-21. Multiplexers can also be used for unusual counting sequences.
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Output0 | 1 L—l E-&-Vcc
Qutput 11 2 23| Output select A
Output 2| 3 _-ZE] Output select B
Output 3| 4 21] Output select C
Output 4} 5 20 | Output seiect D
Output 5] 6 19 ] Data input
Output 6 E 18 | Data input
Output 7| 8 ’ 17 | Output 15
Qutput 8| 9 16 | Output 14
Output 9 | 10 15] Output 13
Output 10} 11 14 | Output 12
Ground | 12 ‘ 13 ] Output 11

Fig. 2-22. The 74154 is a 1-of-16 demultiplexer IC.

DISPLAY DRIVERS

Many digital devices use seven-segment LED or LCD displays
as output devices. Obviously, some method of converting the bi-
nary signals into the appropriate lit displays is necessary. Individual
gates may be used, but this tends to increase total circuit bulk and
cost. Because this is such a common requirement in digital elec-
tronics, a number of display driver ICs have been made available.

A typical example is the CD4511 BCD to 7-Segment
Latch/Decoder/Driver IC, which is illustrated in Fig. 2-23. As the
rather lengthy name indicates, this chip fills a number of related
functions. Basically it accepts a four digit BCD number and puts
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an output signal on the appropriate pins to light the desired dis-
play segments.

BILATERAL SWITCHES

It is often handy to have a digitally controlled switch. That is,
a switch that may be open or closed, depending on the logic signal
from another part of the circuit. This function can conceivably be
served with a gating network, but this can often be awkward, bulky,
and expensive. As you've probably anticipated, IC manufacturers
have met this need with specialized chips.

Figure 2-24 shows the pinout diagram and functional internal
structure of the CD4066 quad bilateral switch. This CMOS chip
consists of four digitally controlled switches. The switches are called
bilateral because they have no fixed polarity.

Digital switch units like the CD4066 are often used in hybrid
circuits that use both digital and analog devices. Analog compo-
nents such as resistors or capacitors may be selected or pro-
grammed via digital signals. Digital-to-analog signal conversion is
one obvious application for this type of device.

BCD inputB{ 1 LJ E +Vce
BCD inputCJ 2 15 | Output f
Lamp test | 3 14 | Output g
Blanking input E 13 ] Output a
Latch enable E 12| Output b
BCD inputD| 6 11| Output ¢
BCD input A | 7 10| Output d
Ground | 8 | 9 | Output e

Fig. 2-23. Many output display interfacing tasks can be accomplished with the
CD4511 BCD to seven-segment latch/decoder/driver IC.
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[ AR T
ControiB |5 |==-dJ ?—E

Fig. 2-24. The CD4066 quad bilateral switch IC contains four digitally controil-
able analog switches.

THREE-STATE LOGIC

We have been discussing two state logic. A somewhat similar
concept is three-state logic. This technique can also be used for dig-
itally controlled switching of digital signals.

Most digital circuits, of course, have two possible output
conditions—either the output is a low voltage (0), or it is a high volt-
age (1). Three-state systems add a third possible output state. This
is a high impedance condition, which is neither a logic 0 or a logic
1, and appears to the circuit as the absence of any signal at all.
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Chapter 3

The CPU

HE HEART OF ANY MICROCOMPUTER CIRCUIT IS THE CPU,

or Central Processing Unit. This is the part of the computer
that does the “‘thinking.”” CPUs are sometimes called microproces-
sors. For our purposes, the two terms are interchangeable.

The most important feature of a CPU is its programmability.
That is, it can be instructed to perform different operations at differ-
ent times. In Chapter 2, we saw how a multiplexer could be *‘pro-
grammed”’ to simulate a complex gating circuit. CPUs carry this
concept much further.

A CPU could be made up from individual gating circuits. (This
was done for the first computers, which were room-filling monsters.)
Such a design would be extremely complicated, expensive, and
bulky. Fortunately CPUs are available in relatively inexpensive IC
form. This is what makes the kind of projects described in this book
practical. Some CPUs can now be bought in single quantities for
under $10. Therefore, it is reasonable to tie up a computer system
for a single, dedicated purpose.

COMMANDS AND DATA

A CPU “‘understands” a number of commands. These are in
binary form. For example, 01001101 or 11101001. Each binary
number has a specific meaning for the CPU. A series of commands
to perform a specific task is called a program. If you program the
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CPU directly, using the binary number commands, this is called
machine-language programming.

Translation programs are available to allow the user to pro-
gram the CPU with a more convenient set of commands. Assem-
bly language replaces each binary number command with an easy
to remember mnemonic. For instance, ADD A,B for adding values
A and B, instead of 10011100. For higher level languages, such
as BASIC or Pascal, each user-entered command may correspond
to several binary language commands in sequence. A special pro-
gram is used to convert the commands entered by the user into
the binary form understandable by the CPU.

COMPONENTS OF A COMPUTER

Figure 3-1 shows the basic structure of a typical computer cir-
cuit. Two or more of these stages may be included on a single IC,
but for now we will consider them as separate entities. There are
essentially four sections to a computer:

{0 Processor (CPU)
O Memory

O Input Port

O Output Port

The processor does the actual computing. The memory stores
the program commands and data used in executing the program.
The input and output ports allow the computer to communicate with
the outside world (anything that is not an integral part of the com-
puter itself). The input port permits data from some external de-
vice to be fed into the computer, and the output port lets the
computer feed its results out to some external device. In a typical
microcomputer, the keyboard is connected to the input port, and
the display screen is connected to the output port.

Communication between the various internal sections of the
computer are accomplished via buses. These are digital signal lines
that can carry coded binary data. The binary data may represent
numerical values, alphanumeric characters, or machine-language
commands. The only difference is in how the CPU is instructed
to interpret the binary information.

The data bus connects the processor section to everything else.
The data bus goes from the CPU to the memory, the input port,
and the output port. Data flows from the input port to the CPU,
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Control

Control

CPU
Control
s FNN
‘ \ 2

port Output
_—_J(—-_ port

Fig. 3-1. Most practical computers include these stages.

from the CPU to the output port, or in either direction between
the memory and the CPU. The CPU determines which piece of data
goes where.

The address bus goes from the CPU to the memory. The data
on this bus determines which portion of the memory the processor
is using. The concept is simple enough if you think that the CPU
needs to know the address of whatever it is looking for, just as you
need to know the address to find a friend’s home.

The third bus is used for system control and synchronization.
The signals on this bus keep the various sections of the computer
functioning simultaneously. For example, the input port uses this
bus to let the CPU know there is some incoming data available from
the external input device.

THE Z80

In the projects described in this book we will be working with
the Z80 CPU chip. Certainly other CPUs could be used, but I feel
the Z80 is probably the best choice. It is a reasonably powerful eight-
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bit device, and is widely available at fairly low cost. This CPU has
been used in many popular eight-bit microcomputers.

There is a trend towards sixteen-bit CPUs recently, but the
main advantages of sixteen-bits are that more memory can be
directly accessed, and that some commands can be executed faster.
This is important for a general-purpose computer, but not for the
dedicated CPU projects we will be dealing with here. An eight-bit
CPU like the Z80 can access up to 64 K of memory (see Chapter
4). Most of our projects will just require 1 or 2 K. Similarly, the
Z80 can execute commands rapidly enough that no delay will be
perceptible.

The Z80 is essentially an upgraded version of the popular 8080.
All 8080 programs can be run on a Z80 machine, but the Z80 has
a number of additional commands and features not available on the
8080. The 8080’s instruction set includes 78 commands. The Z80
adds 80 new commands for a total of 158.

The Physical Structure of the 280

The Z80 comes in a 40-pin DIP housing. The pinout diagram
is shown in Fig. 3-2. Unlike many earlier CPUs (including the 8080),
the Z80 requires only a single-polarity + 5-volt power supply (pin
#11) and only a single-phase clock (pin #6). (The ground connec-
tion is made to pin #29.) Earlier CPUs often required 2 or 3 (or
more) supply voltages, often dual polarity, and complicated clock
circuits. The Z80 is far, far simpler to use.

The Z80 is designed to run at a clock speed of 2.5 MHz. This
is about 25% faster than for the 8080. Some Z80s can be run at
even higher clock rates, up to 4 MHz. For our purposes here, the
boosted speed wouldn’t be much of a noticeable improvement, so
any standard Z80 may be used in the projects. As Fig. 3-2 shows,
the Z80 has a 16-line address bus, labelled A0 to A15:

Address Line Pin #
A0 30
Al 31
A2 32
A3 33
A4 34
A5 35
A6 36
A7 37
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A11—{1 l__l 40'— A10
A12—2 39— A9
A13=-13 38—A8
Al4=—i4 37p—=A7
A15=—45 36}—A6
¢ clock—=6 35— A5
D4=—7 34p=—A4
D3~—8 33~A3
D5—9 32t—A2
D6—{10 31p—A1
+5 V—11 30f—A0
D2—12 29— Ground
D7—{13 28— RFRSH
Do—{14 27w
D1—{15 26[—RESET
iINT—{16 25=—BUSRQ
NMI—{17 24 p—WAIT
HALT—{18 23—BUSAK
MREQ —{19 221—WR
IORQ—{20 21f—RD
A = Address bus
D = Data bus

Fig. 3-2. The projects in this book will be built around the Z80 CPU.
Address Line Pin #

A8 38
A9 39
Al0 40
All 1
A12 2
Al3 3
Al4 4
A1l5 5



The Z80 also has an eight line data bus, labelled DO through D7:

Bus Line Pin #

DO 14
D1 15
D2 12
D3 8
D4 7
D5 9
D6 10
D7 13

The other pins serve various specific functions.

RESET (pin #26) initializes the Z80. This means the program
counter, along with the I and R registers are zeroed. All interrupts
are disabled. The RESET function is activated by feeding a logic
0 into pin #26.

BUSRQ at pin #25 stands for “BUS ReQuest.” This input allows
an external device to request control of the address and data buses
and control signals by inputting a logic 0 on this line. The Z80 relin-
quishes this control by bringing output BUSAK (pin #23) (BUS Ac-
Knowledge) low. This changeover of control is done for DMA
(Direct Memory Access) and similar special functions. When the ex-
ternal device is done, it puts a 1 on the BUSRQ line, and the CPU
resumes control.

Output signal MI (pin #27) goes low when the Z80 is in the oper-
ation code fetch cycle of instruction execution.

IORQ (pin #20) stands for Input/Output ReQuest. When this pin
goes low, it indicates that the address bus holds a valid /O address
for an I/O read (input) or write (output) operation. If both IORQ and
MI are low, an interrupt acknowledge cycle is in progress.

The input labelled INT (pin #16) is an interrupt request line.
In order for the interrupt to be acknowledged by the Z80, the in-
terrupt enable flag (IFF) must be enabled (this is done under soft-
ware control), and BUSRQ must be high. If the interrupt is activated,
IORQ goes low during the MI signal to indicate an interrupt ac-
knowledge to the external I/O device requesting the interrupt.

A second interrupt request line is NMI at pin #17. Perhaps this
should be called an interrupt demand, rather than request, because
this input cannot be disabled (masked). NMI stands for nonmaska-
ble Interrupt. When this line is activated (with a logic zero), the CPU
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jumps to a specific memory location (&H0066). (&H before a num-
ber indicates the value is given in hexidecimal—see Chapter 2.)

MREQ (pin #19), RD (pin #21), and WR (pin #22) are three-state
outputs. The names stand for Memory REQuest, ReaD, and WRite,
respectively. The address bus holds a valid address for memory
access when MREQ and either RD or WR are low.

When a MREQ signal is output to the external memory circuitry,
the memory’s logic circuits put a 0 on the WAIT input (pin #24) until
the memory is finished. This is necessary because some memory
devices may operate at a slower rate than the CPU.

RFRSH (pin #28) is used for memory refresh operations. This
output lets the external memory circuit know that the contents of
the R register are now on the address bus. A refresh read of dy-
namic memory (see Chapter 4) can now be done via the MREQ
signal.

The HALT output (pin #18) is software activated. When the Z80
executes a HALT instruction, this pin goes low. An NMI, I/O inter-
rupt, or control panel action must occur before normal operation
can resume. Typically HALTs are used to wait for an interrupt, stop
execution at the end of the program, or to indicate an error con-
dition.

The internal structure of the Z80 is illustrated in Fig. 3-3.

Timing Signals

Each instruction requires a finite amount of time to be executed.
Different types of instructions require different times. Execution
times are measured in machine cycles (M), each made up of several
clock cycles.

The first machine cycle (MI) is always an operation code fetch
and decode. During this time period, the CPU gets the next instruc-
tion from external memory, and determines what it means.

The various instructions used in the Z80 can take anywhere
from 4 cycles (1.6 ps) to 20 cycles (8 us). Of course, the execution
times would be lengthened if the CPU was interfaced with a slower
external memory device.

Registers

A CPU includes several registers. These are built-in memory
locations used for addressing, manipulating data, and loading com-
mands. All CPUs have a program counter register. This is where
the next address to be accessed in the external memory is held.
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Fig. 3-3. This is a simplified block diagram of the Z80 microprocessor.

Without this register the computer would not be able to ‘‘keep its
place” in the program. It would quickly become hopelessly lost.

The Z80 has 22 internal registers. Most of them (18) hold eight
bits each. The eight-bit registers are named:

A (accumulator)
A r
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DI

HI

L

LI

Flags

Flags’

I (Interrupt Vector)
R (Memory Refresh)

Notice that most of the eight-bit registers are duplicated (as indi-
cated by the prime mark). The functions of the various registers
will be discussed shortly.

An eight-bit register can store any one of 256 different values
(from 0 to 255). Two eight-bit registers can be combined to act as
a sixteen-bit register.

The Z80 also has four sixteen-bit registers. These are:

[0 IX Index Register
O IY Index Register
O Stack Pointer

O Program Counter

A sixteen-bit register can store any of 65,536 values (from 0
to 65,535). All of the registers in the Z80, except the Interrupt Vec-
tor and the Memory Refresh, may be utilized by the programmer.

The Program Counter, of course, is used to hold the current
address in external memory. Because this is a sixteen-bit register,
65,536 (64K) memory location may be directly addressed by the
Z80. This bus is brought out to the sixteen address bus pins (30
-40,1-5).

The Stack Pointer is similar to the Program Counter. It is used
to locate a piece of data anywhere in external memory (65,536 pos-
sible locations). This register also uses the address bus pins. The
“Stack’ is a section of memory used to temporarily store varia-
bles (data) during the program. The Stack is also used to “remem-
ber” the previous value of the Program Counter during subroutines,
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and other register values during interrupt routines.

The CPU can be programmed to notice when certain condi-
tions exist, and interrupt the program to perform a special inter-
rupt routine (which may be located anywhere within the external
memory). When the interrupt routine is completed, the main pro-
gram will be resumed. Interrupts will be discussed in more detail
later on. The eight most significant bits of an interrupt vector ad-
dress are loaded into register I (Interrupt Page Register). The eight
least significant bits of the address are supplied by the interrupt-
ing input device.

Register R is used for Memory Refresh of dynamic external
RAM (memory). Dynamic RAM will forget everything if it is not
periodically refreshed. Register R allows the Z80 to do this auto-
matically, so the user doesn’t have to worry much about it. This
register uses seven bits to count every instruction fetch. Its con-
tents (from 0O to 127) are transmitted through the seven least sig-
nificant address bus lines while the current instruction is being
decoded. External memory logic is used to complete the refresh-
ing process.

The two index registers (IX and IY) allow the CPU to perform
indexed type instructions. These instructions are primarily used
for accessing data tables in memory.

Register A is a general-purpose register. That is, its current
function is determined by the specific program. This register is also
known as the accumulator. It is the primary register used to hold
the results of arithmetic and logic operations in the Z80.

The Z80 has several other general-purpose registers (B, C, D,
E, H, and L) that can be used along with register A for temporary
storage of various values throughout the program. These additional
general-purpose registers can be combined in pairs to create a 16-bit
register if required. The pair arrangements are as follows:

B—-C
D—-E
H-L

A complete second set of general-purpose arrays is also avail-
able in the Z80 (A, B/, C/, D', E’, H’, and L'). A single instruction
can be used to switch between the two sets of registers. This is
particularly useful to increase speed during interrupt operations.
The temporary restlts can be stored in the second set of registers
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rather than external memory. This allows the CPU to retrieve these
values faster.

The FLAGS register (sometimes called F) is a set of eight yes/no
condition indicators. The flag bits can be checked by the CPU to
determine various effects of arithmetic and logic operations. The
eight flags are:

O Bit #0¢ C Carry Flag This flag indicates
whether or not an
overflow occurred in
the last arithmetic
operation. It is like a
mathematical carry.

(0 Bit ##i N Subtract Flag This flag is used inter-
nally for BCD sub-
tract operations. It is
not used by the
programmer.

O Bit #2  P/V  Parity/Over-

flow Flag This flag has a dual
purpose. It is used to
check parity for logic
operations or over-
flow for arithmetic

operations.
O Bit #3 X Not used.
0O Bit # H Half-Carry
Flag This flag is used inter-

nally for BCD opera-
tions. It is not used by
the programmer.

OBit #/6 X Not used.

[0 Bit #6 Zero Flag This flag is set (1) if
the result is zero,
otherwise it is reset

0).

OBt #7 S Sign Flag This flag is set (1) if
the result is negative,
otherwise it is reset

0.

N
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A second FLAGS register (FLAGS' or F' ) is provided for use with
the primed set of general purpose registers.

The Instruction Set

The power of any CPU is in its instruction set. The instruc-
tion set is simply all the binary commands the CPU can understand
and execute. A CPU that understood only ten or so commands could
theoretically be programmed to do anything a more powerful CPU
could do, but the programming would be awkward and tedious and
take up an unnecessary amount of memory space.

The Z80’s instruction set is made up of 158 commands, which
is quite a powerful collection. For convenience, the commands can
be divided into eight basic categories:

O Arithmetic and Logical

O Bit Manipulation

O Block Transfer and Search
O CPU Control

O Input/Output

O Jump, Call and Return

O Load and Exchange

O Rotate and Shift

The Arithmetic and Logical category should be fairly self-
explanatory. This category includes instructions for performing
mathematical operations such as add, subtract, and multiply, and
for performing logical operations such as AND, OR, and NOT.

These logical operations are performed on a bit-by-bit basis for
the contents of two registers. For example:

A = 10100101

B = 11001001

A AND B = 10000001
A OrR B = 11101101
A XOR B = 01101100

The Z80 always places the results of its arithmetic and logical
operations into register A. Any previous contents of this register
will be lost unless they have previously been stored elsewhere (in
another register, or in external memory).

The Z80 has several special instructions for performing mathe-
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matical operations directly on BCD values, eliminating several steps
in many applications.

The Z80's bit manipulation instructions allow the programmer
to check or change the value of any individual bit in a number stored
in one of the registers or external memory. This class of commands
was not included in the 8080’s instruction set.

The Block Transfer and Search commands are also unique.
Such commands are not supported on most other CPUs. The func-
tions can be accomplished with any computer, of course, but usually
they take many separate instructions. On the Z80 a single command
can be used to transfer a block of data from one memory location
to another, or to search a block of memory for a specified character.

The CPU Control category is sort of a miscellaneous catchall
for several commands that control the operation of the CPU itself.
This category includes HALT and enable/disable instructions. There
are also three instructions to set various interrupt modes, and a
“no-operation’’ instruction.

The commands in the Input/Output category control the inter-
action between the CPU and external I/O devices. Data may be
transferred between the CPU and an external device either one bit
at a time, or one byte (8 bits) at a time. Block transfers of data can
also be accomplished with I/O devices.

The JUMP, CALL, and RETURN commands are used for uncon-
ditional and conditional branches to other sections of the program
(rather than the next consecutive instruction according to the Pro-
gram Counter). A conditional jump is made only if the data being
examined has certain characteristics. For example, a conditional
jump might be made if the contents of register A are greater than
the contents of register B.

This class of commands also includes instructions for using pro-
gram subroutines. A subroutine is a section of a program that may
be called from any point within the main program. When the
subroutine is completed, the main program is resumed from where
it left off.

Load and Exchange instructions are used to transfer data be-
tween the CPU’s internal registers, or between registers and ex-
ternal memory. Data is moved eight or sixteen bits at a time.

Finally, the Rotate and Shift commands perform operations
similar to the shift register circuits described in Chapter 2. Arith-
metical and logical shifts are supported by the Z80. Any CPU reg-
ister or memory location may be shifted. The value to be shifted
does not necessarily have to be in the accumulator (register A). The
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Z80 even includes two instructions for rotating BCD digits.

Addressing Modes

The Z80 can use several different addressing modes to find
stored data. Each has its advantages in different programming ap-
plications. The nine addressing modes of the Z80 are:

O Register Addressing

O Implied Addressing

O Register Indirect Addressing

O Extended Addressing

(0 Immediate Extended Addressing
O Modified Page Zero Addressing
O Relative Addressing

O Indexed Addressing

All of these addressing modes are carried over from the 8080
except for Relative Addressing and Indexed Addressing.

The simplest addressing mode is Register Addressing. In this
mode one of the CPU'’s internal registers is being addressed. The
appropriate register name is included in the instruction itself. For
example, INC B tells the CPU to increment (add one to) the value
currently stored in register B.

Implied Addressing is similar, except the appropriate register
is not specifically mentioned in the instruction. It is implied. For
example, the command ADD B tells the CPU to add the contents
of register B to the contents of register A, and store the result in
register A, even though register A is not mentioned in the com-
mand. Its use is implied, since this register is normally used in all
arithmetic and logic operations.

In Register Indirect Addressing, the value held in the speci-
fied register pair (16 bits) identifies a specific location in external
memory. Usually the HL pair is used for this function, but the BC
or DE pairs may also be used.

Extended Addressing might be called Direct External Address-
ing. The full instruction is made up of three bytes. The first byte
is the actual command code. The other two bytes are the actual
memory address desired. For example, if the value in the second
and third bytes is the binary equivalent of 375, the 375th memory
location will be addressed.

In the Immediate Addressing mode, external memory and the
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CPU registers are ignored. An eight-bit (one byte) value is entered
as part of the instruction. This value is used as the operand of the
required operation.

Extended Immediate Addressing is similar to the Immediate
Addressing mode. The difference is that in this mode, a 16-bit (two
byte) immediate value is entered along with the instruction code.

Modified Page Zero Addressing is used to call a commonly used
subroutine or interrupt routine processing for multi-interrupt capa-
bility. The command is called a restart, and transfers the program
pointer to a page 0 location. Page 0 is defined as memory locations
0 through FF,, (255,,). The advantage here is that only a single
byte is required for the CALL function. This reduces the amount
of memory consumed by the program, and speeds up the execution.

The seven addressing modes described so far were also in-
cluded in the 8080. Relative Addressing is a new mode added to
the Z80’s instruction set. This mode is used only for jump type in-
structions. A two-byte instruction is used. The first byte is the ac-
tual command code. The second byte is an eight bit signed
displacement value from —128 to +127. A Relative Addressing
command can cause the program pointer to jump back up to — 126
locations or forward up to + 129 locations from its current posi-
tion. Once again the advantage is reducing the memory space con-
sumed by the program, and to speed up the execution of the
instruction.

Indexed Addressing was another new feature for the Z80, which
was not part of the 8080’s instruction set. In this addressing mode,
the contents of one of the two index registers (IX or IY) is added
to an eight-bit displacement value included in the instruction. This
mode is basically an expanded form of the Relative Addressing
mode.

interrupt Processing

One of the most important features determining the power of
a CPU is its interrupt processing capabilities. Interrupts allow the
CPU to respond to external conditions and alter its programming
accordingly. The Z80 has strong interrupt processing capabilities.

Two interrupt inputs are included on the Z80 chip—INT and
NMI. INT is the standard interrupt from an external I/O device. NMI
is used for a Nonmaskable Interrupt. Nonmaskable simply means
that this interrupt line cannot be disabled by software. If a logic
0 is applied to this pin, the CPU will always respond to the inter-
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ruption. This type of interrupt should be used for critical condi-
tions that should be acted upon immediately, such as system reset,
or power failure.

When a Nonmaskable Interrupt is triggered (logic 0), the Z80
will execute a RESTART to memory location &H0066 (the &H pre-
fix, remember, represents a hexadecimal value). The contents of
the Program Counter are automatically saved by PUSHing the con-
tents onto the Stack. (The NMI feature is not included on the earlier
8080.)

The standard INT type interrupt can be enabled (EI) or disa-
bled (DI) via software commands. When disabled, an interrupt sig-
nal presented to the INT pin will be ignored.

Three interrupt modes are also software selectable:

O IMO
0 1
0O IM2

Of course, when the DI (disabled) command has been called, none
of the interrupt modes can function.

The IMO mode is the only interrupt mode that was available
on the 8080. In the IMO mode when a logic 0 is presented to INT,
the CPU goes into an interrupt state. It signals the interrupting ex-
ternal /O device via the I0RQ and MI outputs. These signals tell
the interrupting device that the CPU is ready for it. The current
contents of the Program Counter are PUSHed onto the Stack. A
RESTART instruction includes a three-bit value from 0 to 7. Depend-
ing on this value, control of the CPU will be automatically trans-
ferred to one of the following memory locations:

Binary Decimal Memory

Value Value Location
000 0 &HO00
001 1 &HO08
010 2 &H10
011 3 &H18
100 4 &H20
101 5 &H28
110 6 &H30
111 7 &H38
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These eight memory locations are closely spaced (only eight
bytes apart). Generally, they will include instructions for JUMPs to
other areas of memory.

At the end of the interrupt routine, a return (RET) instruction
should be used to POP the address of the interrupted instruction
from the Stack to the Program Counter, and the CPU picks up
where it left off. As you can see, several different interrupt rou-
tines may easily be set up to respond appropriately to various in-
terrupting I/0 devices.

The M1 mode functions similarly to the NM1 input, except it
can be software enabled. When an interrupt is received in this mode,
the Program Counter’s contents are PUSHed onto the Stack, and
a RESTART is executed. Program control jumps to &H38. The chief
advantage of this mode is that no external hardware is required
to jam the RESTART instruction onto the data bus at the proper
time. The disadvantage is that only a single interrupt handling rou-
tine can be set up.

The third interrupt mode (IM2) is extremely powerful. Up to
128 different interrupt levels can be defined in this mode. A table
of addresses for the various interrupt processing routines can be
stored anywhere in memory. The most significant eight bits of the
starting address for this table are previously stored in register 1.
In the IM2 mode, the IORQ and MI outputs respond in the same way
as in mode IMo. The interrupting I/O device then transmits an eight-
bit value representing the lower eight bits of the interrupt vector.
This value is combined with register I to complete the interrupt
table address. CPU control is transferred to the appropriate address
in the table for the specific device currently interrupting.

The last bit of the device number must always be 0. This is
because each stored address in the table takes up two bytes, so
the odd bytes should be skipped. This leaves 128 possible values
that can be input by the interrupting device.

External logic should be used to establish the priority of the
various external devices to ensure that only one interrupt can oc-
cur at any one time.
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Chapter 4

Semiconductor Memory

NY COMPUTER REQUIRES SOME KIND OF MEMORY CIRCUIT

to function. Memory circuits store binary numbers in elec-
trical form. The stored numbers may represent program commands
(in machine language), numerical data, or alphanumerical
characters.

The simplest digital memory circuit is the flip-flop (see Chap-
ter 2). It can “remember”’ one bit (binary digit) indefinitely, until
it is triggered into the opposite state, or power is interrupted. A
binary word or byte can be stored in a shift register.

Unfortunately, these devices are very limited as memory cir-
cuits in a computer. Unless the amount of data to be stored is ex-
tremely small, a collection of flip-flops or shift registers will
probably be completely inadequate for the task. Fortunately,
specialized digital circuits, called memories, have been developed.
Many different types and sizes of digital memory circuits are widely
available in IC form. For our purposes, memory devices can be
divided into two broad classes:

0O RAM
O ROM

RAM (Random Access Memory) can be read from or written to.
That is, the CPU can examine or change the stored data.
ROM (Read Only Memory), on the other hand, can only be read
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from. It cannot be written to. The CPU can examine data stored
in ROM, but it cannot alter it in any way. Within each of these broad
categories, there are several variations.

RAM

RAM is short for Random Access Memory. This name indicates
that any specific location in the memory can be contacted without
stepping through any other locations. This permits very fast ex-
change of data between memory and the CPU.

A shift register, on the other hand, is an example of a sequen-
tial memory. For instance, let’s say we need to know the logic state
of bit number 5 in an eight-stage SISO shift register. Before we
can look at bit 5, we have to step through bits 1, 2, 3, and 4. Obvi-
ously, this will take some finite amount of time. When dealing with
thousands of bits of data, the disadvantages of sequential memory
becomes obvious.

However, in some cases sequential memory still has its uses.
Most microcomputers, especially low cost models, can store pro-
grams and data on cassette tapes for later use. All data on the tape
must be accessed sequentially. It is not as convenient as the more
random access floppy disc, but it is considerably cheaper and
mechanically simpler. (Floppy discs are not entirely random access,
but they come reasonably close.)

A random access memory assigns a unique address to each in-
dividual memory location, with each location holding one piece of
memory (generally either one bit or one byte). This type of mem-
ory can be considered analogous to a post office box system. Any
box (or memory location) can be uniquely defined by an address
identifying its column and row. This concept is illustrated in Fig.
4-1. There is no need to go through any intermediate locations. If
we know the address we can go directly to the desired location.

In 2a RAM we can either look at the value stored at a given
address without changing it (read), or we can replace the old value
with a new value (write). For this reason, RAM is occasionally called
Read/Write Memory, or RWM. Some technicians feel this is a bet-
ter name since ROM (discussed shortly) can also be randomly ac-
cessed. However, RAM is the established name in common usage.

There are two basic types of RAM depending on the circuitry
used. They are called static RAM and dynamic RAM.

Static RAM
A static RAM is basically made up of a series of addressable
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Fig. 4-1. Memory addressing can be thought of as a post office box system.

flip-flops. Data can be stored in a static RAM virtually indefinitely,
unless the stored values are erased or changed, or the power sup-
ply is interrupted. A static RAM cannot store data without con-
tinuously applied power. A typical static memory cell using CMOS
technology is illustrated in Fig. 4-2.

Static RAM retains stored data as long as power is supplied
to the chip. CMOS devices usually have a special low-power mode.
Only enough power is drawn to prevent the memory from being
erased, but not enough to operate the entire chip for full
READ/WRITE operations. Battery back-up can be used, because only
1 pA (0.000001 amp), or less, is drawn in the low-power mode. Es-
sentially the battery life span is about the same as its unused
shelf-life.

The internal structure of a typical static RAM IC is shown in
Fig. 4-3. There are three primary sections:

O Memory cell array
O Address decoding
O T/O block

Each memory cell stores a single bit of data. The cells are ar-
ranged in an array of rows and columns. The address decoding cir-
cuitry determines the appropriate row and column positions
(address) for each cell as it is called by the CPU. As long as a cell
is unselected by the address decoder, its output is not connected
to anything at all.
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Fig. 4-2. This is a typical static RAM cell.
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Fig. 4-3. A typical static RAM IC has three primary sections.
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The I/0 (Input/Output) block interfaces the memory cells with
circuitry outside the IC. This section determines whether a READ
or a WRITE operation is to be performed. An output buffer ampli-
fier is also included in the I/O block to prevent unnecessary drain
on the memory cell outputs. The output buffer is usually called the
sense amplifier.

Most modern RAM ICs have a CHIP ENABLE pin. This allows
a three-state output, which is an advantage when several memory
devices share the same data.

Dynamic RAM

The other type of RAM is dynamic RAM. In a dynamic RAM
circuit, each bit is stored in a capacitor (or, usually, the etched
equivalent in an integrated circuit). A charged capacitor represents
a logic 1, while a discharged capacitor would represent a logic 0.

A dynamic memory cell is much simpler than a static memory
cell. Compare the dynamic memory cell circuit in Fig. 4-4 with the
static memory cell circuit shown in Fig. 4-2. This means that, all
other factors being equal, a dynamic memory of a given storage
capability will tend to be much smaller and less expensive than a
comparable static memory.

Dynamic RAM is certainly not without its disadvantages. The
most important limitation is that no capacitor can hold a charge
indefinitely. Eventually the charge will tend to leak off, erasing the
stored data.

Electronically reading the value stored in a dynamic memory
cell tends to recharge partially charged capacitors, refreshing the

Address

Address

Fig. 4-4. Dynamic RAM cells are
TT simpler than static RAM celis.
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Fig. 4-5. Block diagram of a typical dynamic RAM IC.

memory. Practical dynamic memory systems, therefore, require
special refreshing circuits that will automatically read all of the
memory locations at regular intervals to prevent the charged capa-
citors from leaking off so much voltage.

A dynamic memory cell is simpler than a static memory cell,
but dynamic memories require more complex supporting circuitry
(to periodically refresh the capacitor charges), so a trade-off is in-
evitable.

Improvements in technology have allowed for more static mem-
ory cells to be contained within a single IC chip, and at somewhat
lower manufacturing costs. At the moment, the balance of the scale
tips somewhat towards static over dynamic memories in most
general applications. But dynamic RAM is still far from obsolete.
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A block diagram of a typical dynamic RAM IC is shown in Fig.
4-5. Most modern dynamic RAM ICs includes built-in refresh cir-
cuitry. The entire IC is refreshed during a READ operation, or a
whole row can be refreshed by simply addressing it.

To save on the number of pins, the same pins are generally
used for both row and column addressing. Two more control pins
determine the current function. Row and column strobes indicate
which address is currently on the bus.

Making The Choice

Static and dynamic RAM each have their own advantages and
disadvantages. Static RAM requires simpler support circuitry, and
is easier to use. The circuitry of the cells themselves is more com-
plex. Fewer cells can be contained within an IC of a given size.
Also, a static RAM chip will tend to cost more than a comparable
dynamic RAM IC.

Because each dynamic RAM cell is really nothing more than
a capacitor, dynamic RAMs tend to be relatively inexpensive and
compact, compared to static RAMs. But the need for periodic
refreshing of the stored data calls for more complex support cir-
cuitry design.

For the projects in this book, I have decided to concentrate on
static RAMs. IC technology has improved to a point where these
devices are not too expensive. Since the projects will only require
a fairly small amount of memory, the difference in costs wouldn’t
amount to much more than a dollar or so. Dynamic RAM wouldn’t
offer much advantage for our purposes here, although it may still
be desirable in a complete microcomputer.

ROM

Data can be read out of or written into a RAM. The user can
store his own data, freely changing it at any time. Unfortunately,
if the power to the system is ever cut off for any reason, any and
all data stored in RAM will be irretrievably lost. In some applica-
tions it may be desirable that some data or programming be stored
in memory in such a way that the user cannot inadvertently erase
or change it.

It is extremely convenient to have some programming auto-
matically boot up when the system is turned on. All computer sys-
tems need some kind of operating system. Most microcomputers
also have a high-level language translation program (usually BA-
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SIC) that is immediately available upon power up.

The solution to these problems and special requirements is a
type of memory that can be read from but not written to. This type
of memory is called ROM or Read Only Memory.

Like RAM, ROM is usually supplied in IC form. All of the data
in a ROM chip is permanently determined by the manufacturer
when the device is made. Obviously, this means that ROMs are
only practical for applications where many identical units are re-
quired. Otherwise the manufacturing costs would be too high.

A typical use of ROM chips would be in a commercial
microcomputer system. The operating system and the BASIC pro-
gramming language are included in ROM, so the user won’t have
to load this software into the computer each time he turns it on.

Some popular microcomputers, such as the Tandy Color Com-
puter have a special port where external ROM packs can be plugged
in. Each ROM pack contains software for a specific application.
Video game systems are dedicated microcomputers. Usually the
software (game programs) are supplied in ROM packs.

Because the data stored in a ROM is permanently hard-wired
within a chip, each ROM memory cell can be far simpler than ei-
ther a static or dynamic RAM cell. Several typical ROM cells are
illustrated in Fig. 4-6. The data stored in each cell is determined

Address B

Address A

Sense line

Fig. 4-6. ROM cells are very simple in concept.
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by the presence (logic 1) or the absence (logic 0) of a connecting
diode element at the appropriate address location. The user has
no way of ever changing any of the data stored in a ROM. If even
a single bit must be changed, the entire ROM chip must be replaced.

The chief advantage of ROM is its permanance. Stored data
cannot be accidentally lost, even if system power is disconnected
for years.

PROM

Since the data in a ROM must be irrevocably determined at
the time of manufacture, this type of memory is really not very prac-
tical for applications where only a few copies are to be made. It
certainly isn’t very practical for the hobbyist. Unless you need a
few hundred identically programmed ROM chips, the cost per unit
would be too high.

Fortunately, a compromise is available. For applications where
the permanent storage capabilities are needed, but only a few
copies (or just a single prototype) will be used, a user-programmable
ROM has been developed. This type of memory is called PROM,
or Programmable-Read-Only Memory.

Each memory cell in a PROM is similar to a ROM cell. The
difference is that the connecting diode elements are a special fused
type. Every memory cell in a PROM contains a fused diode ele-
ment at each and every address location (all 1’s). The user can pro-
gram the chip by selectively blowing out the fuses on unwanted
diodes (0’s).

Once programmed, a PROM behaves exactly like a ROM. Data
can be read from it, but the stored data cannot be erased or changed
by the microcomputer. Of course, additional fuses may be blown
(special circuitry is required) to change more 1’s to 0’s. But there
is no way to ever replace a blown diode (change a 0 back to a 1.

Once programmed, the data stored in a PROM cannot be
changed by the CPU. This means if a mistake is made during pro-
gramming the PROM, or even a small change is needed, the en-
tire chip must be discarded and a new one must be programmed
from scratch.

EPROM

There is a special type of PROM that allows the chip to be
erased and reused. This type of memory is known as EPROM, or
Erasable-Programmable-Read-Only Memory.
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An EPROM works in essentially the same way as a regular
PROM except for the fact that the entire chip can be cleared (all
of the stored data erased) by exposing the chip to a strong ultraviolet
light source. A small plastic window is embedded in the IC pack-
age for this purpose.

Note that the entire chip must be erased at once. There is no
way to change just a few bits selectively. It is an all or nothing
proposition.

Because sunlight and most other visible light sources contain
some ultraviolet energy, a programmed EPROM should be care-
fully shielded from all light to avoid accidental erasure of data. As
long as the erase window is kept covered, there should be no
problem.

A more recent variant is the EEPROM, or Electrically-Erasable-
Programmable-Read-Only Memory. In this type of device, a special
electrical signal is used to clear (erase) the stored data in the chip
as a whole. Again, individual bits cannot be selectively altered.

MEASURING MEMORY SIZE

Since binary numbers are used to define the memory location
addresses, the number of cells in a memory system is almost in-
variably a power of 2, like 256 (28), 1024 (219), or 4096 (212).

In large practical systems, memory size is usually defined as
being so many K. The letter K is normally used to indicate a fac-
tor of one thousand. However, 1000 is not a power of 2. The nearest
power of 2 is 1024, so in memory systems K actually represents
a factor of 1024. That is:

1K = 1024
4K = 4096
16 K = 16384
64 K = 65536
128 K = 131072
256 K = 262144
1000 K = 1 Meg = 1024000

You do have to be careful about just what is being counted.
For many memory ICs, 1 K indicates a storage capability of 1024
bits, while in computer systems, the quantity in question is the num-
ber of bytes that can be stored. A 4 K memory in this instance would
hold 4096 sets of 8 bits each, or 32,768 individual bits (0’s or 1’s).
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The variable terminology can cause some confusion if you’re not
careful.

As IC technology has been improved over the years, more and
more memory cells can be crammed onto a single bit. Many mod-
ern memory ICs use multiple bit locations. Usually it will be speci-
fied as, for example, 4 K x 8 bits. In this device, 4096 bytes could
be stored. Each memory location will be eight arrays deep. Each
array must have its own individual set of I/O circuitry. A 4096 x
1 memory and a 256 x 8 memory will each hold 4096 individual
bits, but the single dimensioned unit will tend to be significantly
less expensive because of the lesser I/O requirements.

The number of memory cells that can be placed on a single
chip has increased significantly over the last few years. The re-
quired number of pins can easily become extremely unwieldy. The
solution is to use the same address lines for both row and column
addresses. Decoder pins are used to identify which type of address
is currently on the line. Matrixing circuitry is included on-chip to
keep everything straight. This increases the complexity and cost
of the individual chip, but even so, a single 256 K bit chip is going
to be cheaper than four separate 64 K ICs.

OTHER MEMORY DEVICES

A number of other forms of memory have been developed over
the last few years. Some, such as bubble memories and CCDs
{Charge-Coupled Device) show considerable promise for the future.
Currently, however, they are prohibitively expensive for the ex-
perimenter. It would not be appropriate to discuss them in detail
here. Hopefully, a future edition of this book will be able to dis-
cuss the availability of such devices.
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Chapter 5

Interfacing

HE MOST POWERFUL CPU IN THE WORLD WON'T DO A BIT

of good if it can’t communicate with the outside world. In this
chapter we will cover the basics of interfacing. Interfacing is noth-
ing more than the methods used to connect a CPU with various
Input and/or Output devices.

MEMORY MAPPED /O

Most CPUs treat Input/Output ports as memory locations. Cer-
tain memory addresses are used as I/O ports, rather than actual
memory locations. Data can be READ from or you can WRITE to an
I/0 port in the exact same way as regular memory. This method
of interfacing is called Memory Mapped 1/O.

I/O ports are addressed like ordinary memory locations, but
they generally don’t function in quite the same way. Some /O
registers are READ ONLY (input). These registers are used to input
data, and to indicate the status of the I/O device. Other I/O registers
are WRITE ONLY (output), including data output and control signals
from the CPU to the I/O device. If the CPU needs to know what
was previously fed to a WRITE ONLY port, the data should have been
saved to another memory location.

Because no special I/O instructions are needed by the CPU,
using Memory Mapped /O frees up operation codes for other pur-
poses. However, most CPUs don’t use all possible operation codes
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anyway. For an eight bit CPU, there are 256 possible codes. The
780, for example uses less than 200. Therefore, saving op-codes
is a limited advantage.

Memory Mapped I/O does, however, offer some real advan-
tages. Programming is slightly simplified. Memory reference com-
mands can be used to manipulate the I/O registers, rather than being
limited to simple LOAD and STORE operations.

In a high-level language, such as BASIC, memory mapped I/O
can also come in handy. PEEK and POKE commands can be used
to interact with any I/O port. I/O ports can be addressed directly
without resorting to machine-language routines.

There are also some minor disadvantages. Specialized I/O com-
mands would make some functions a little more convenient. Also,
in most full microcomputers, memory space is at a premium. Mem-
ory Mapped /O uses up some of the memory locations (typically
256 to 4096 addresses). Most CPUs use only Memory Mapped I/O.
It works just fine. In many applications it is highly desirable, in
others it is simply adequate.

DIRECT 11O

The Z80 (and the earlier 8080) offers another interfacing mode.
1/0 ports are addressed directly, separate from memory locations.
Specialized commands are used for I/O:

O In Read Input
[0 Out Write Output

An eight bit I/O address is included with the IN or OUT com-
mands. This adds up to a total of 256 possible I/O ports. Some com-
plex I/0 devices will use up more than a single port, so the number
isn’t quite as large as it might seem at first glance. Floppy-disc con-
trollers typically use about eight interface registers.

Direct I/O requires a slightly more complex system bus, be-
cause I/O READ and I/O WRITE control signals are needed in addi-
tion to the address and data bus lines. The nice thing about the
Z80’s approach is that either Direct or Memory Mapped /O can
be used. It is up to the designer to select the method best suited
to the specific application at hand.

Z80 INTERFACE TIMING
To design CPU circuits and I/O interfaces, you need to know
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the timing signals. You have to know what will happen and when.
A typical memory read by the Z80 takes three clock periods, as
illustrated in Fig. 5-1. If the memory cannot respond quickly
enough, it will issue a WAIT signal to make the CPU not move on
before it has acquired the desired data. The way the WAIT signal
affects the timing of a READ operation is illustrated in Fig. 5-2. The
basic pattern is the same, but during the WAIT cycles, the CPU is

L—T1 T2—)L—T3—>|

Clock

Address
lines

MREQ— -

ﬁB————-\ /___

Data
bus va
Data
strobed
into
CPU

Fig. 5-1. A typical memory read by the Z80 takes three clock periods.
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Fig. 5-2. wair can be used to extend the timing of a ReEaD operation.

in a holding pattern. Essentially, nothing happens until the exter-
nal memory device is ready to respond.

Referring back to Fig. 5-1, notice the MREQ (Memory REQuest)
signal. This line is used to indicate that a valid memory address
is now on the address bus lines (A0-A15). At the same time, the
RD (ReaD) line is also brought low to READ the data currently
stored at the addressed memory location. Data is strobed into the
CPU register at the indicated time.

The timing of a WRITE operation is similar, as shown in Fig.
5-3. The WR (WRite) line is used instead of RD, of course. The
data to be stored is held on the data bus for most of the three cy-
cles of the WRITE operation. Slower external memory device can
also force the CPU to WAIT during a WRITE operation, as described
earlier for READ operations.

The Z80’s INPUT and OUTPUT operations follow a similar tim-
ing pattern. The main difference is the use of the I0RQ (I/O Re-
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Quest) line, instead of MREQ. The timing signals for an IN (input)
operation are shown in Fig. 5-4. An OUT (output) operation’s tim-
ing signals are illustrated in Fig. 5-5. I/O devices can issue WAIT
signals to extend the timing as necessary, just as discussed earlier
for external memory.

Note that the IN and QUT operations are normally four clock
periods long, rather than the three clock periods of READ and WRITE
operations. This is because the Z80 automatically adds a WAIT cy-
cle. Virtually all /O devices are slower than semiconductor
memories.

BUS INTERFACE CIRCUITRY

A typical I/O bus interface is made up of an address recognizer
(so the port knows when the CPU is addressing it) along with ap-
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Fig. 5-3. The timing of wRITE operations is similar to that of ReaD operations.
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Fig. 5-4. These are the timing signals for a typical IN operation.

propriate input buffers and/or output latches. Address recognizers
are not really complicated. An address recognizer is really noth-
ing much more than a multi-input (16-input lines) AND gate with
selected inputs inverted. Figure 5-6 shows a circuit for recogniz-
ing the following address:

1100 1010 1110 0111

This circuit is set up for a Memory Mapped I/O system. The same
type of circuitry could be used with a Direct 1/O system, but only
address lines A0 to A7 would be used. Control and status lines
would also have to be included. When the proper address is on the
bus, the clock signal is brought high to activate the port.

Often a number of interfaces will be included on a single board.
In this case, most of the address bits can be ANDed together once
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and factored into a more limited decoder/gating system. This
reduces the IC count of the circuit, lowering the cost and space
requirements of the interface board.

To interface 1/0 signals, of course, we need to know the elec-
trical characteristics of the signals. In most cases, a logical 1 is about
+5 volts, and a logic 0 is approximately ground potential (0 volts).
Most digital circuitry will fill these requirements easily.

Current is a little trickier in some cases. Input is rarely a prob-
lem. Only a very small current is drawn by the CPU’s input line(s).
There can be some difficulty in interfacing output signals. Typi-
cally a CPU can only put out a mere 1 mA or so. This is definitely
insufficient to drive most practical output devices. It is not even
enough to light up a simple LED.

L—n —>L—Tz—>L—Ts—)L—T4—>
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Port
address X
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bus | l

Data available
to I/O device

Fig. 5-5. These are the timing signals for a typical ouT operation.
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Fig. 5-6. Address recognition can be accomplished via an AND gate with
selected inputs inverted.

Some sort of buffer stage is clearly needed. The 75492, shown
in Fig. 5-7, is a CMOS type device that can be a useful aid in inter-
facing output signals. It is a hex inverter. Each of the six indepen-
dent inverter stages can sink up to 200 mA. This is sufficient to
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Fig. 5-7. The 75492 is a good choice for buffering I/O signals.

drive LEDs or small electromechanical relays, solenoids, and other
such devices. The 75492 can share its power supply with the CPU.

Figure 5-8 shows a simple interface circuit for driving an LED.
The LED will light when the CPU outputs a logic 1. It will be dark
for a logic 0 (or for no output).

In some applications we may want the output device to respond
in the opposite way (on for 0, off for 1). There are two ways to do
this. One is to simply reverse the polarity of the LED, as illustrated
in Fig. 5-9. This will work, but it is only applicable for LEDs. A

+V

Fig. 5-8. This output circuit can be
used to light up a LED.

Vs

LED
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114

LED

Fig. 5-9. Reversing the LED’s polar-
ity inverts its response.

more general method is shown in Fig. 5-10. The second inverter
stage reinverts the signal to match the CPU’s original output.

Figure 5-11 shows how a small electromechanical relay can be
used as an output device. If you need to drive a larger load, you
can simply use the small relay to drive a larger relay, as shown
in Fig. 5-12. Optoisolators can also be very useful for output inter-
facing. An example is illustrated in Fig. 5-13. The circuit shown
here is designed to turn a cassette recorder’s motor on and off. A
CPU’s output can be used to control an ac appliance. An interface
circuit for this application is illustrated in Fig. 5-14.

So far in this section we have been dealing with 1-bit output
devices. There is no reason at all why we can’t use the entire 8-bit
data bus of the CPU. Figure 5-15 shows how we can use four BCD
encoded bits from the data bus to drive a seven-segment LED dis-
play that can display any of the ten standard digits. The IC labelled

+V

4

LED

Fig. 5-10. This is a more generalized method of inverting output signal reactions.
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P

Relay

Fig. 5-11. A computer can control a small electromechanical relay.

7475 is a latch. This component allows the computer to do other
things, while the LEDs continue to display the output data. The
number displayed will remain unchanged until the port is accessed
again (with a new OUT command) and new data is fed into the
latches. (Of course, if power is interrupted, the latches will ““for-
get” what the stored display data was.)

+$Pl| +q\./,z q
| S
)

—3

Relay 1

Fig. 5-12. A small relay can be used to drive a larger relay to limit current drain
on the our line.
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Fig. 5-13. Optoisolators can be very useful for I/O interfacing.

+5V
Ac
330 @ socket
Optocoupler (load)

HEP-P5002

Ac
t plug
@9 117 Vac

Fig. 5-14. This circuit can be used to allow the CPU to turn any ac appliance
on and off.
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Fig. 5-15. Four BCD-encoded bits can drive a seven-segment LED unit.

The 7447 is a seven-segment decoder/driver IC. Both the 7475
and the 7447 are TTL devices. Their power supply should be a
tightly regulated +5 volts. Similar CMOS devices could be sub-
stituted, if you prefer.

INTERFACING ANALOG SIGNALS

There is one basic problem with interfacing computers with
many external devices. Computers are, by definition, digital devices.
They deal with strings of simple on/off signals. There are never
any intermediate values. But, it’s an analog world outside the com-
puter. Most circuitry deals with a continuous linear range of values.
There are no neat, clear-cut steps.

To use an analog device as an input for a computer, we need
some way to transform the analog signal into a digital signal. Cir-
cuitry to accomplish this task is called, not surprisingly, an A/D
(analog-to-digital) converter. Similarly, to use an analog device for
output purposes, a D/A (digital-to-analog) converter is used. Both
types of converter will be discussed shortly.

An analog signal is made up of a continuously varying series
of levels. A digital signal is made up of a series of discrete values.
If we sample the analog waveform at various discrete moments
within its cycle, we can digitally express the instantaneous level
for each sample, as illustrated in Fig. 5-16. By the same token, if
we output a string of digital values at a regular rate, we can roughly
simulate an analog waveform. Obviously, the greater the number
of samples per cycle, the better the accuracy. Figure 5-17 shows
the crude results obtained when only a small number of samples
per cycle is used.
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Fig. 5-16. An analog waveform can be digitized by sampling its instantaneous
level at rapid intervals.

The sampling rate must be at least twice the highest analog
frequency to be converted. Figure 5-18 illustrates why this is so.
If the sample rate is less than twice the sampled frequency, the
separation between cycles will be lost. A lower phantom frequency
will be created. This is called aliasing. If we need to preserve the
original waveshape, instead of just the signal frequency, higher sam-
pling rates may be required.

In our examples we have been showing sine waves. A sine wave
is the simplest analog ac signal. It consists of a single frequency
component. More complex waveforms are made up of many differ-
ent frequency components called harmonics, which are multiples
of the base frequency. To preserve the waveshape in the conver-
sion process, the sampling rate must be at least twice the highest
frequency component of interest.

Another problem with the digital representation of analog sig-
nals is called quantization ervor. An analog signal can take any value
along a continuous range. Digital signals can only take on specific
discrete values. Intermediate values cannot be expressed, and must
be rounded off. This rounding off can create a certain amount of
distortion, as illustrated in Fig. 5-19. The conversion process (in

Fig. 5-17. If the sampling rate is relatively low, only a crude representation of
the original waveform will be digitized.
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distortion

Fig. 5-18. if the sampling rate is less than twice the frequency being sampied,
aliasing can resuit.

either direction) takes some finite amount of time. This is called
the conversion time (T)).

Some A/D converters are called successtve approximation types.
The conversion time is equal to # + 1 clock (sample) periods, when

1

110

avh i
¥

0o

000

X = Actual sample
O = Rounded sample

Fig. 5-19. Digitizing inevitably causes some distortion, due to the rounding off
of intermediate values.

139



n is the bit length of the digital output. For example, an 8-bit suc-
cessive approximation A/D converter would have a conversion time
equal to 9 clock periods.

Other A/D converters require a conversion time equal to 27,
where 7 is again equal to the number of bits in the output. This
type of converter is slower than the successive approximation type.

Conversion time influences the maximum number of samples
that can be taken per unit of time. The absolute maximum num-
ber of cycles per second is equal to:

UT,

Another time factor to be considered is the aperture time. This
is the total time losses throughout the system influencing the max-
imum possible sampling rate. The primary component of the aper-
ture time is the conversion time, but there are other factors,
including output settling time and the slew rate of the input amplifier.

D/A Converters

We will first look at D/A (digital-to-analog) converters because
they tend to be somewhat simpler than A/D (analog-to-digital con-
verters). Once we understand D/A conversion. A/D conversion is
less intimidating.

The simplest form of D/A converter is shown in Fig. 5-20. It
is nothing more than a simple resistive mixer network followed by

Digital
in
LSB R % Analog

W\ l/ ot
R/2

——
R/4

—_——
R/8

Fig. 5-20. A simple resistive mixer network can serve as a D/A converter.
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a buffer amplifier (to prevent loading down the digital output cir-
cuitry). Only four bits are shown for simplicity. The same princi-
ples can be applied to any number of bits.

The resistor values are of importance, of course. This is be-
cause the various bits in a binary number have different values.
The most-significant-bit (further to the left) is weighted heavier than
the least-significant-bit (further to the right):

MSB LSB
1 0 1 0

Each successive bit is an increase of a power of two. There-
fore, the resistance values are also set up in factors of two.

R1 R MSB
R2 2R

R3 4R

R4 B8R LSB

For small digital values (few bits), this isn’t a problem. For ex-
ample, for a 4-bit system, if R is equal to 1 k (1000 ohms), the resis-
tor for the least-significant bit would have to be equal to 8R, or
8 k. For an 8-bit system, the resistance values would have to run
up to 128 k. For a sixteen bit D/A converter, the LSB resistor would
need a value of 32,768,000 ohms. It is next to impossible to get
a reasonable amount of stability over such a range of resistances.

Another problem is the odd-ball resistance values required. For
an 8-bit system, you will need the following resistance values (as-
suming R = 1 k):

1k
2k* (22K
4k+* (39K
8k+* (82K
16 k= (15k)
32k~ (33k)
64 k* (62 k)
128 k* (120 k)

The values marked * are not standard values. The standard values
given in parentheses may be used, but at a loss of accuracy.
A better approach is the R/2R ladder network, illustrated in
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2R
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2R
MSB

Fig. 5-21. The R-2R ladder D/A converter is usually easier to work with than

the circuit shown in Fig. 5-20.

Fig. 5-21. Only two resistance values are required—R and 2R. Each
bit sees a different resistance between ground and the buffer am-

plifier.

To digitally simulate (or recreate) an analog waveform, a string
of digital values is fed through the D/A converter in sequence, as
shown in Fig. 5-22. A better approximation can be achieved by

Fig. 5-22. An analog waveform can be simulated by feeding out a string of

binary values through a D/A converter.
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Computer D/A out

Amp
Filter
capacitor

Fig. 5-23. The analog output can be improved with a simple filter capacitor.

smoothing out the output signal with a low-pass filter. A moder-
ately large capacitor across the output, as shown in Fig. 5-23, will
do the trick fairly well. The results are illustrated in Fig. 5-24.

A/D Converters

Analog-to-digital (A/D) conversion is a somewhat more com-
plicated proposition than digital-to-analog (D/A) conversion. This
is because of the timing and resolution problems described earlier
in this chapter.

There are several possible approaches to A/D conversion. One
basic method is based on the integrator. An integrator is an op-
amp (operational amplifier) circuit that creates a ramp voltage from
the input voltage. A simple integrator circuit is illustrated in Fig.

Fig. 5-24. Here we see the results of using a filter capacitor at the output of
a D/A converter.
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5-25. Integrators are used in two popular forms of A/D converters.
They are:

O Single-slope
[0 Double-slope

Figure 5-26 shows the block diagram for a typical single-slope
A/D converter circuit. Note that it is made up of several simpler
subcircuits:

O Sample and Hold

[J Integrator

O Electronic Switch

O Voltage Comparator

O Reference Voltage

O Gate

O Clock

O Gate Generator (Timing Coordinator)
O Counter

A sample and hold is a circuit that samples the instantaneous
value of an analog input signal when triggered, and holds the sam-
pled value at the output until retriggered. This stage gives the in-
tegrator a constant input voltage to work with for each conversion.

The switch is used to clear the circuit to zero. When it is closed,
the capacitor is allowed to discharge. Usually this is an electronic
rather than a mechanical switch. Often a FET (field-effect transis-
tor) is used for this purpose. It is controlled by the gate generator.

%

In O~——AN, -

b0 Out

/77

Fig. 5-25. Most A/D converters are based on the integrator.
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O—AAA~
" Gate Counter
. {

Comparator

Integrator

Fig. 5-26. A block diagram of a typical single-slope A/D converter.

The output of the integrator rises from zero in a linear fashion, at
a rate determined by the input voltage.

The next stage after the integrator is the comparator. A com-
parator is a circuit that compares two analog input voltages and
issues an output to indicate which one is higher. The output of the
integrator is compared with a reference voltage.

The clock puts out a continuous stream of evenly spaced pulses.
As long as the output of the comparator is high (reference voltage
is greater than the integrator’s output voltage) the clock pulses can
pass through the gate to the counter. The counter simply counts
how many clock periods occur before the integrator voltage exceeds
the reference voltage. This produces a binary value that is propor-
tional to the analog input voltage.

The single-slope A/D converter is relatively simple (in fact, it
is the simplest type of A/D converter) and fairly low cost, but it
suffers somewhat in terms of accuracy. The last digit will tend to
bobble because partial clock pulses may be included in the timing
period, “confusing’’ the counter circuitry. An improvement in ac-
curacy and stability can be obtained by using a dual-slope A/D con-
verter circuit. The block diagram for this type of device is shown
in Fig. 5-27.
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Fig. 5-27. A dual-siope A/D converter is more accurate and stable than a single-
slope circuit.

A dual-slope A/D converter is made up of the following sub-
circuits:

Sample and Hold *
Reference
Electronic Switch *
Integrator *
Comparator *
Clock *

Gate *

Logic Control
Counter *

OoooOoonooono

Most of these subcircuits are essentially the same in function
as in the single-slope A/D converter discussed earlier. These dupli-
cations are marked with asterisks. The reference is a precision volt-
age or current source. It is used as a comparison standard for the
unknown analog input signal.

At the beginning of the cycle, the input voltage is fed through
the integrator and the number of clock pulses is counted, as in the
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single-slope A/D converter until the counter overflows. At this point
the output of the integrator is proportional to the input signal. Now
the control logic section will change the integrator’s input to the
Reference, which has the opposite polarity as the original analog
signal. Therefore, the new integration process will discharge the
capacitor. The integrator’s ramp will slope downwards, rather than
upwards. The signals are illustrated in Fig. 5-28. Because the Refer-
ence has a constant value, the discharge slope will have a constant
rate. The steepness of the slope will be proportional to the analog
input signal.

Because the counter has just overflowed before the discharge
process, the count is 0000. The count will continue to increment
during the downward slope until the integrator output reaches zero

-~

PRSP iy i ——

R I P <

Strobe

Fig. 5-28. These are the internal signals from the circuit shown in Fig. 5-27.
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Fig. 5-29. The parallel A/D converter is often called a flash converter because
of its high speed conversions.

(ground), cutting off the comparator/gate network. The count at
this point will be proportional to the level of the analog input signal.
The dual-slope A/D converter is relatively immune to noise er-
rors in the input signal and clock frequency inaccuracies. However,
this type of circuit is relatively slow (although still fast enough for
most practical purposes) and fairly complex and expensive.

A completely different approach to A/D conversion is the par-
allel converter, which is illustrated in Fig. 5-29. It is basically a se-
ries of voltage comparators, comparing the analog input signal with
a dc reference voltage. A precision resistor network is nsed to bias
the comparator stages. Each comparator is biased one LSB higher
than its neighbor.

There are some serious limitations to the parallel A/D con-
verter, especially in terms of the number of output bits. The num-
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ber of comparator stages can rapidly become extremely unwieldy.
Plus, there is a practical limit to how small an LSB the compara-
tors can recognize. The chief advantage of this type of A/D con-
verter is speed. Conversion takes place virtually instantly. Parallel
A/D converters are often called flash converters for this very reason.
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Chapter 6

CPU Breadboard

OW THAT WE HAVE THE BASICS DOWN, WE CAN GET TO

work on the actual projects. The basic computer at the heart
of the projects will be virtually the same in each case, so we will
cover the common circuitry in this chapter. In addition, we will set
up a convenient breadboarding system for experimenting with the
various CPU-based circuitry.

For best results, you should etch PC boards for the circuits.
Because these projects are intended only as starting points for your
own customization, foil patterns for PC boards cannot be included
here. An alternative approach would be to use wire-wrapping tech-
niques. Just don’t try to get away with any kind of point-to-point
wiring. Computer circuitry is too precise for that.

COMPONENTS OF THE SYSTEM

Several subcircuits will be used in most of the projects. Our
breadboarding system will include permanent versions of each. The
subcircuits described in this chapter include:

O Power supply

0O CPU

O Clock/Signal Generator
O Memory

O Hexadecimal Keypad
O LED readouts

1563



O Input port
O Output port
O Breadboard

All of the circuitry will be designed with the Z80 CPU in mind.
If you use a different CPU chip, additional support circuitry may
be required.

POWER SUPPLY

The power supply requirements are not complex. The Z80 re-
quires a reasonably well-regulated +5 volt voltage source. This
same voltage can be used to drive virtually all of the support cir-
cuitry. The power supply circuit should be able to supply a hefty
amount of current, because a number of different circuits may be
operating at the same time.

The 7805, shown in Fig. 6-1, is a widely available 5-volt regu-
lator IC. With adequate heatsinking, it can supply up to 1.5 amp.
To limit the current drain, we will use three 7805’s in parallel. The
first will supply the CPU and memory chips. The second powers
the input circuits, and the third supplies the output circuits. This
division of labor will help limit the chances of overloading one of
the voltage regulator chips. However, don’t make the mistake of

Gnd
3

Top
view

Input \ Output

m Gnd 4]
()]

Fig. 6-1. The 7805 is a popular 5-volt regulator IC.
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Table 6-1. Parts List for Fig. 6-2.

IC1-IC3 7805 5-volt Regulator
D1-D4 1N4004 Diode

T 6.3 Vac Transtormer
F1 3-amp Fuse

F2-F4 1-amp Fuse
C1,C3,.C5 470 uF Capacitor
C2, C4, C6 0.1 xF Capacitor

skimping on heatsinking. Adequate heatsinking is assumed in the
design. If you're not sure, include a little extra heatsinking. You
can’t have too much. A three amp input fuse will also help prevent
blowing any of the regulators.

The complete power supply circuit is illustrated in Fig. 6-2. The
parts list is given in Table 6-1. The output fuses for each of the
regulators are optional. If used, it will be virtually impossible (or,
at least, extremely unlikely) to burn out a regulator. The input fuse
is mot optional. It must be used to ensure the safety of your cir-
cuitry and yourself. It doesn’t pay to scrimp on simple safety. A
fuse and holder doesn’t cost that much. Not having the system fused
when problems show up, could cost a lot. In some cases, it could
cost your life. Include the input fuse, and use a grounding plug,
especially if a metal chassis is used to house Any of the circuitry
supplied by the power supply.

THE CPU

As stated earlier, the CPU used is the Z80. This is not a terri-
bly expensive IC, but still, do yourself a big favor, and use a socket
(40 pins). It will make construction and later servicing much, much
easier.

For your convenience, the pinout diagram of the Z80 is shown
in Fig. 6-3. The Z80 is reasonably seif-contained, so no external
circuitry is required for the CPU section.

CLOCK

Any CPU requires some sort of clock to drive it. All operation
timings are defined in terms of clock cycles. We need a source of
clean square waves with fairly precise frequency stability. Most
computer systems use a crystal-controlled clock, because of the de-
gree of precision offered.

The clock circuit we will be using is illustrated in Fig. 6-4. The
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J
A1 41 40 I~ A10
A1242 39— A9
A1343 38 A8
A4 4 37 A7
A15-5 36 [~ A6
¢ Clock =16 351 A5
D47 341~ A4
D3-g 33~ A3
D519 321 A2
D6 10 311 A1
+5V-111 30 A0
D2 12 29 Ground
D7 113 28 [~ RFRSH
DO <14 27+ MI
D115 26 — Reset
INT16 25~ BUSRQ
NMI= 17 24~ WaAIT
HALT 18 23~ BUSRK
MREQ-19 22— WR
1ORQ 20 21 -RD
A = Address bus
D = Data bus

Fig. 6-3. The pinout diagram of the Z80 CPU IC.

parts list is given in Table 6-2. Notice that the clock output is made
available for use of other circuitry, in addition to the CPU itself.
Also, note that connections to the CPU will be indicated by a cir-
cle containing the appropriate pin number. This convention will be
employed throughout this book.

MEMORY

For the on-board memory, I have decided to use the
MM74C920. The pinout for this device is shown in Fig. 6-5. This
IC is arranged as 256 x 4 bits. If we use two MM74C920’s in par-
allel we can have a 256 byte RAM. This should be sufficient for
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Fig. 6-4. This is the clock circuit for our breadboarding system.

the projects used in this book. Both memory chips are addressed
in unison.

The memory circuit for our CPU breadboard system is illus-
trated in Fig. 6-6. Notice that only the lower 8 bits of the address
bus are used. If you choose to expand the system with additional
memory devices, you can utilize the upper memory addresses
(above &HFF). Each 256 byte section of memory is commonly
called a page. Figure 6-7 shows how to address a second page of
memory.

Because static RAM is being used, no special support circuitry
is required. If you choose to employ dynamic RAMs, you will need
to include provisions for automatic refreshing of the memory cells.

HEXADECIMAL KEYPAD

The circuits described so far in this chapter make up a fairly
complete computer. There’s just one problem—there’s no way for
the user to communicate with the CPU. Without input and output

Table 6-2. Parts List for Fig. 6-4.

IC1 CD4013 Flip-Flop

IC2 CD4069 Hex Inverter

Rt 10 MQ Resistor

R2 330 Q Resistor

C1 22 pF Capacitor

XTAL 3.58 MHz Crystal (3.579545 MHz2)
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Fig. 6-5. The MM74C920 is used for on-board RAM in our breadboarding
system.

devices, the computer system is absolutely worthless.

The most common method of entering data (and commands)
into a computer is some form of keyboard. For our projects, we
don’t need a full alphanumeric keyboard. We will be working ex-
clusively with machine-language commands, and numerical data.
For convenience, we will use the hexadecimal (base sixteen) num-
bering system. Each byte on the data bus is made up of two hex-
adecimal digits.

A hexidecimal keypad has sixteen key switches:

0-1-2-3-4-5-6-7-
8-9-A-B-C-D-E-F
It is generally convenient to arrange the keys in a row/column
format, as illustrated in Fig. 6-8. You can obtain a suitable hex-

adecimal keypad for just a few bucks from many surplus dealers.
Alternatively, you can cannibalize the keys from a pocket calculator.
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Fig. 6-6. This is the complete on-board RAM circuit.

A8

Chip Chip
enable enable
RAM RAM
page 1 page 2
m 0
A6 J—l
As o a Ji
A4
A3 ——{r
A2
Al
A0

Fig. 6-7. Here we see how to address a second page of memory.
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a b c d
Row ___ | 1 | 2 | ] 3 4
a
Row __1 5 _ 6 - 7 8 I
b
Row —_ 9 — 1 A B (o] N
c
Row 4§ D _— E 1 F o —
d

Fig. 6-8. The keypad is arranged in a row/column format.

A circuit for encoding the hexadecimal switches into binary
form is shown in Fig. 6-9. The parts list is given in Table 6-3. Switch
debouncing is included in the circuit to prevent false data entry.

The flip-flop labelled U/L determines whether the next key
pressed will be placed on the upper four bits or the lower four bits
of the data bus. It will automatically reverse its state after each
key press.

Closely related to the keypad is the memory stepper shown in
Fig. 6-10. Table 6-4 gives the parts list. This circuit allows you to
step forward or backward through the memory addresses. Each
time S1 is closed, the address will be increased by one. S2 will de-
crease the address by one. This allows the user to gain access to
any memory location.

Because our basic system has only 256 bytes of memory, the
counter is designed to only count from 0 to 255. If you use a larger
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Key entry
IC 11-14 Bounce
Repeat inhibit
for [
each key iC 7-10
$1-815 \ N To
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IC15
- Output
IC18

Inputs Ic Output
13567 9BDF IC15 a
2 367 ABEF IC16 b
4 567CDEF IC17 c
8 9 ABCDEF IC18 d
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Fig. 6-10. The memory stepper circuit.
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Table 6-3. Parts List for Fig. 6-9.

IC1, IC3, IC4 74C27 Triple 3-input NOR Gate
IC2, IC5 CD4009 Hex Inverter
ICé 74C121 One Shot
IC7-1C10,

1C20, IC21 74C08 Quad 2-Input AND Gate
IC11-IC14 74C32 Quad 2-Input OR Gate
IC15-IC18 74C30 8-input NAND Gate
IC19 74C74 Dual D-Type Flip-Flop
R1 22 kQ Resistor
R2-R17 4.7 kQ Resistor
C1 47 uF Capacitor

Table 6-4. Parts List for Fig. 6-10.

IC1 7404 Hex Inverter
IC2, ICS, IC6 7493 Binary Counter
IC3 Dual 4-Input AND Gate
IC4 Quad 2-Input AND Gate
R1, R2 10 kQ Resistor
§1, 82 NO Push Switches
o7 2 R1-R?7
13 16 6 15 " 2
D6 s 15 2 14 A:;T
‘ o1 e Y e P o
7 12 13
110
10 .. 8
9 7
R8-R14
15 2
6 [TENEL)
2l s [13 .t o1s2
1 12 .., 13
7 M. 10
10 8
9 . 7

Fig. 6-11. Output data is displayed on two seven-segment LED units.
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Table 6-5. Parts List for Fig. 6-11.

IC1, IC4 7475

IC2, IC5 7447

IC3 7402

DIS1, DIS2 7-Segment LED Display
(MAN71, or equivalent)

R1-R14 270 Q Resistor

FEEERETEEE
SEEEEEEEED

Fig. 6-12. A typical interconnection pattern for a breadboarding socket.
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memory, you will need to increase the range of the counter. The
eight LEDs indicate the current memory address in binary. For
larger memories, more LEDs will have to be added.

LED DATA READOUT

Figure 6-11 shows the circuitry required to display data in hex-
adecimal form on two seven-segment LED units. The parts list is

Address
recognizer

AO0-A15 >

Dr1e °< § S °<\I < Incoming

data

D2

D3 °<} .

D4

D5 a<\’ <
D6

D7

Fig. 6-13. The basic input port circuit.
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Address Output
recognizer . controt

< (if used)
AQ-A15 >

DO
ST

G S

output
D2 > ‘DC device
D3
D4 >——{>o—> ] > >
!

D5

D6 ». %
D7 > %

Fig. 6-14. The basic output port circuit.

given in Table 6-5. These displays will readout data from the CPU
and entries from the hexadecimal keypad.

THE BREADBOARD SYSTEM

We have covered the basic subcircuits that will recur through-
out the projects. Now, we need some method of interfacing these
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circuits with additional circuitry to create the individual dedicated
projects described in the next few chapters.

A breadboarding socket can be mounted on the system chas-
sis to allow easy experimentation. This is simply a multipin sol-
derless socket that the various component leads and jumper wires
can quickly be plugged into or pulled out of. The various socket
holes are electrically interconnected in a specific pattern. A typi-
cal pattern is illustrated in Fig. 6-12.

Figure 6-13 shows the basic input port, and the basic output
port is illustrated in Fig. 6-14. The specific project circuitry will
be connected to the CPU through these ports.
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Chapter 7

EPROM Programmer

HE PROGRAMMING FOR EACH OF THE PROGRAMS CAN BE
entered into RAM. But, each time you turn off the power,
it will be completely lost. You'll have to re-enter the program the
next time you want to use the project. This is a nuisance at best.
EPROMs are an ideal choice for permanent storage. The ex-
perimenter can store whatever data/programs he chooses. Further,
the EPROM can be erased and reused if the project’s hardware
or software is changed. Moreover, some projects might lose their
usefulness over time. If you're no longer using a project, you can
erase the EPROM and reuse it in a new project.

In this chapter we will describe a circuit for programming
EPROMs. The EPROM we will be using is the 2704. This chip
holds 512 (1/2 K) bytes—more than enough for our purposes. The
pinout for this IC is shown in Fig. 7-1.

Figure 7-2 shows how the EPROM can be addressed by the
CPU along with the RAM featured in the preceeding chapter. No-
tice that the EPROM’s addresses start at &H00 00 and runs to
&HO02 00. RAM addresses start at &H02 01 instead of &H00, as
in the original design. This is because the CPU will look to the first
location in memory when it is first turned on. This is where the
program should begin. Unless we want to manually enter a JUMP
command when power is applied, some form of ROM should be
at the bottom of memory.

While the use of IC sockets is strongly advised throughout the
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Fig. 7-1. The 2704 EPROM can store 1/2 K bytes.
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Chip Chip
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Al
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Fig. 7-2. The EPROM is addressed at a higher page over the system RAM.
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projects, it is virtually mandatory for the EPROM(s). The only way
to change the program is to physically exchange the EPROM chip.
You certainly don’t want to have to desolder for this.

The EPROM programming circuit is shown in Fig. 7-3. The
parts list is given in Table 7-1. Notice that several supply voltages
are needed to power this circuit, in addition to the standard +5
volts. Figure 7-4 shows a circuit for a supplemental power supply
to provide the additional required voltages:

+30 volts
+12 volts
-5 volts

The parts list for the supplemental power supply is given in Table
7-2. The +5 volts connections are made to the power supply cir-
cuit described in Chapter 6.

EPROMs have a small window in the DIP housing, as illus-
trated in Fig. 7-5. This window is used to erase the data stored in
the chip. To prevent accidental erasure, cover the window with a
piece of black electrical tape before programming.

To erase the EPROM, remove the black tape covering the win-
dow, and expose the chip to a strong ultraviolet light source for
15 to 30 minutes. An ultraviolet lamp can be purchased from many

Table 7-1. Parts List for Fig. 7-3.

IC1 Quad 2-Input OR Gate

iIC2 8-Input NAND Gate

IC3 Hex Inverter

IC4 8255 Programmable Peripheral Interface
ICS 74151 Dual Peripheral AND Driver
IC6 LM723 Voltage Regulator

LED1 LED (“READ"’)

LED2 LED (“WRITE")

R1, R6, R7 2.2 kQ Resistor

R2 5.6 kQ Resistor

R3 10 kQ Resistor

R4 10 Q2 Resistor

RS 10 kQ Trimpot

R8 220 Q Resistor

R9, R10 330 Q Resistor

Ct, C3 0.1 uF Capacitor

Cc2 22 uF Capacitor
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DO D1 D2 D3 D4 D5 D6 D7
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IC4
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24
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Reset , 13
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Fig. 7-3. This circuit is used to program EPROMs.
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Fig. 7-4. Supplemental power supply for the EPROM programmer circuit.

Fig. 7-5. EPROMs are erased by
shining a strong ultraviolet light on
a small window embedded in the
chip body.




Table 7-2. Parts List for Fig. 7-4.

IC1
Ic2

R1

R2
C1,C2
c3

T

F1

LM340-12 +12-volt Regulator
L M320-5 - 5-volt Regulator

1 k@ 1/2-watt Resistor

4.7 kQ 1/2-watt Resistor

1000 xF Electrolytic Capacitor
0.1 uF Capacitor

30-V CT 300 mA Transformer
0.5-amp Fuse and Holder

hardware, lighting, and novelty stores. In a real pinch, you could
expose the chip’s window to strong sunlight for a few hours, but
it is better to have an ultraviolet light source that is under your

control.
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Chapter 8

Timer/Automation Systems

N THE LAST TWO CHAPTERS WE BUILT A BASIC CPU SYSTEM

for our projects. Now, it's time to start putting it all to work
for practical applications. In this chapter we will explore the use
of the CPU as an ultimate control clock. Because of its precise clock
pulses driving all its functions, a CPU can serve as a very accurate
time-keeping device. The output ports can be used to control vir-
tually any external device you like.

Imagine setting up your full stereo system to work as a clock
radio. The air conditioning can automatically be turned on a half
hour before you come home. Outdoor lighting can operate under
computer control, so you don’t have to remember to turn on (or
off) the porch light. The possibilities are truly limitless.

AC CONTROLLER

Many of the devices we will want to place under computer con-
trol operate on standard house current (120 volts ac). Of course,
the CPU cannot supply or directly gate this voltage. But it can oper-
ate an SCR that can turn on the flow of ac power.

The CPU only needs to turn the SCR on with a brief pulse.
The SCR will then latch on indefinitely, while the CPU turns its
attention elsewhere. This allows the CPU to turn on any ac-powered
device at any time. But, we also want the CPU to automatically
cut off power. Removing the on pulse won’t help, because the SCR
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Fig. 8-1. This circuit allows computer control over almost any ac-powered device.

is a latching device. A second control pulse won’t do anything. To
turn off an SCR, the current flow from cathode to anode must be
momentarily interrupted.

Figure 8-1 shows a computer-controlled SCR circuit. Notice that
there are two digital control inputs—one to turn the SCR on, and
the other to turn it back off. For both control inputs, a logic 0 means
no change, and a logic 1 initiates the associated action (turn on or
turn off). A parts list for this circuit is given in Table 8-1.

Because ac voltages flow through this circuit, you must use
careful construction techniques. All wiring must be enclosed. It
should be impossible for anyone to ever touch any exposed con-
ductor. If a metal chassis is used, it must be 100% isolated from
all of the circuitry. Do not use the chassis for a circuit ground!

Notice that yet another fuse is used. This is partially to pro-
tect the SCR and its associated circuitry against output shorts, but,
more importantly, it is to protect anyone using the project against
potentially fatal electrical shock. Before applying power check
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Table 8-1. Parts List for Fig. 8-1.

IC1 75492 Hex Inverter/Buffer
IC2 HEP P5002 Optocoupler
SCR HEP R1723 SCR (600 watts)
K1 Small relay

K2 Ac relay

D1, D2 1N4004 Diode

R1, R2 330 Q 1/2-watt Resistor

F 4.5-amp Fuse

everything over very, very carefully. Then check it all again. You
can’t possibly be too careful when working with ac voltages.

ADDRESSING

Figure 8-2 illustrates how the CPU can address a bank of SCR
circuits. Each byte can control up to four of these circuits (two bits
each):

bit 0 Aon
bit 1 A off
bit 2 B on
bit 3 B off
bit 4 Con
bit 5 C off
bit 6 D on
bit 7 D off

The circuitry shown here uses the address &H1F FF. Chang-
ing the inverters on the address lines can change the address. As
far as the CPU is concerned, this is a memory location. LOAD com-
mands can be used to activate any control combination. Some com-
binations, such as &HO03 should never be used. This value would

BO B1 B2 B3 B4 B5 B6 B7
A on A off B on B off Con | C off D on D off

Fig. 8-2. The CPU can easily address a bank of SCR control circuits. (Fig. 8-1.)
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try to simultaneously turn device A both on and off. The valid con-
trol values are as follows:

&HO0 no change

&HO1 A on
&HO02 A off
&HO4 B on

&HO05 A on/B on
&HO06 A off/B on
&HO08 B off

&HO09 A on/B off
&HOA A off/B off
&H10 Con

&H11 A on/C on
&H12 A off/C on
&H14 B on/C on
&H15 A on/B on/C on
&H16 A off/B on/C on
&H18 B off/C on
&H19 A on/B off/C on
&HI1A A off/B off/C on
&H20 C off

&H21 A on/C off
&H22 A off/C off
&H24 B on/C off
&H25 A on/B on/C off
&H26 A off/B on/C off
&H28 B off/C off
&H29 A on/B off/C off
&H2A A off/B off/C off
&H40 D on

&H41 A on/D on
&H42 A off/D on
&H44 B on/D on
&HA45 A on/B on/D on
&H46 A off/B on/D on
&H48 B off/D on
&H49 A on/B off/D on
&H4A A off/B off/D on
&H50 C on/D on
&H51 A on/C on/D on
&H52 A off/C on/D on
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&H54
&H55
&H56
&H58
&H59
&H5A
&H60
&H61
&H62
&H64
&H65
&H66
&H68
&H69
&H6A
&HB80
&HS81
&H82
&H84
&H85
&H86
&HS88
&H89
&HSA
&H90
&H91
&HO92
&H94
&H95
&H96
&H98
&H99
&H9A
&HAQ
&HAL1
&HA2
&HA4
&HA5
&HA6
&HAS8
&HA9
&HAA

B on/C on/D on

A on/B on/C on/D on

A off/B on/C on/D on

B off/C on/D on

A on/B off/C on/D on

A off/B off/C on/D on
C off/D on

A on/C off/D on

A off/C off/D on

B on/C off/D on

A on/B on/C off/D on

A off/B on/C off/D on
B off/C off/D on

A on/B off/C off/D on
A off/B off/C off/D on
D off

A on/D off

A off/D off

B on/D off

A on/B on/D off

A off/B on/D off

B off/D off

A on/B off/D off

A off/B off/D off

C on/D off

A on/C on/D off

A off/C on/D off

B on/C on/D off

A on/B on/C on/D off

A off/B on/C on/D off
B off/C on/D off

A on/B off/C on/D off
A off/B off/C on/D off
C off/D off

A on/C off/D off

A off/C off/D off

B on/C off/D off

A on/B on/C off/D off
A off/B on/C off/D off
B off/C off/D off

A on/B off/C off/D off
A off/B off/C off/D off
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SOFTWARE

The software for this type of project is quite simple. The CPU
should be instructed to cycle through a time-wasting/counting loop.
Each loop should be set up so it lasts a specific amount of time (X
number of clock cycles). We can keep time by counting the loop
cycles. For example, if each loop lasts 0.5 second, 120 loops will
equal 1 minute.

When the count value (time) equals a preset value, the appropri-
ate control value is LOADed into the pseudomemory location (out-
put port). Then the CPU returns to the loop and continues counting
and biding its time until the next scheduled event.
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Chapter 9
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Security Systems

N THE LAST CHAPTER, WE SAW HOW WE COULD USE SIMPLE

on/off output ports to set up an automation system. In this chap-
ter we will be using simple on/off input ports to sense various con-
ditions and trigger an alarm (or some other indicator device) at an
output port. It is not at all difficult to create a complete multipur-
pose security system, including burglar and fire alarms.

BURGLAR FOOLER

Many complete security systems include a timer to turn lights
on and off at certain times. The idea is to fool a burglar into think-
ing someone is home when the building is unoccupied. The prob-
lem is that a smart burglar might watch a target house several
nights before breaking in. A simple timer will switch on and off
at about the same time each night. This is clearly a mechanical de-
vice, rather than a living human being going about his business.
Rather than fooling the potential burglar, the simple light timer can
actually be a help for the burglar—it proves quite conclusively that
no one’s at home.

A CPU-based system can do a much better job. Lights in vari-
ous parts of the house can be switched on or off at multiple and
differing times each night. An element of randomness can even be
added to the program. If you want to include a burglar fooler in
your security system, simply include some of the timing/automa-
tion circuits from the last chapter.
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DOOR/WINDOW SWITCHES

The simplest security system devices are nothing more than
switches mounted on doors and windows. Often magnetic switches
are used. These devices are housed in two units. One unit contains
a permanent magnet, while the other contains a reed switch that
is sensitive to the magnetic field. When the magnetic unit is held
close to the switch unit, the switch is held in one position. Moving
the magnet causes the switch to reverse states. The use of such
a switch is illustrated in Fig. 9-1. The magnet unit is mounted on
the door, and the switch unit is mounted on the door frame. When
the door is closed, the two units are close to each other. Opening
the door moves the magnet away from the switch unit.

Magnetic switches are available in two types—normally open
and normally closed. A normally-open switch has open contacts when
the magnet unit is at a distance. Moving the magnet unit close to
the switch unit closes the contacts. A normally-closed switch func-
tions in exactly the opposite manner. To summarize:

Normally Open
Magnet near contacts closed
Magnet far contacts open

__——rL?/ Switch

Magnet

N/

Fig. 8-1. Magnetic switches are frequently used in security systems.
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Fig. 9-2. This circuit allows a NO intrusion switch as a one-bit input to the CPU.

Normally Closed
Magnet near contacts open
Magnet far contacts closed

Generally, in security systems, normally-closed switches are
preferred. This is because if the connecting wires are cut, normally-
open switches will be defeated, but in a normally-closed system,
a broken wire will trigger the alarm.

On the other hand, a normally-open system tends to involve
considerably simpler circuitry. If cut wires are not likely to be a
problem, normally-open switches may be a better choice.

In a CPU based security system, there isn’t much difference
in circuit complexity between NO and NC systems. Figure 9-2
shows an input circuit for one NO switch. This circuit inputs one
bit to the CPU. Eight of these circuits can be accommodated on
a one-byte input port. A NC circuit is shown in Fig. 9-3. It is basi-
cally the same as the NO version, except an inverter is added. Fig-
ure 9-4 shows how the input port can be addressed as a
read-only-memory location. The circuitry shown here addresses
&HI1F FD.

Why bother using the computer to monitor simple switches like
this? A less complicated analog circuit can be used to trigger an
alarm from any of a number of switches. The advantage of the com-
puter is that it can tell which switch has been activated, how long
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Fig. 9-3. The addition of an inverter converts the circuit of Fig. 9-2 for use with
a NC switch.

it is activated, and exactly when it was activated, depending on the
programming. Such information can give you a much more powerful
security system.

BROKEN BEAM DETECTORS

Many burglar alarm systems include motion detectors in addi-
tion to door and window switches. If an intruder gets past the en-
try alarms, he can still be foiled by a system that can detect his
movements in a protected area.

The simplest type of motion detector is the broken-beam de-
tector. A broken beam detector is made of two separate parts—a
light source, and a light sensor. The light source emits a beam of
light at the light sensor. If anything blocks the beam of light, the
light sensor is triggered. A broken-beam detector system is illus-
trated in Fig. 9-5.

Obviously, the sensor must be shielded from any ambient light
in the protected area. Such systems function best in a darkened
area. A shield around the light sensor, as illustrated in Fig. 9-6,
helps cut down on problems from external light sources.

An infrared light source can be used instead of a visible light
source. It might be a little more expensive, but the light beam will
be invisible, and therefore harder to avoid.
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A light sensor circuit for a computer system is shown in Fig.
9-7. Table 9-1 is the parts list for this circuit. The detector is a pho-
tocell. If you use an infrared light source, an infrared sensitive pho-
tocell should be used. Such devices are almost as readily available
as photocells that are sensitive to visible light. Each such detector
circuit is one input bit to the CPU.

A15

Al4

A13

A12

A1
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A9
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A5

A4

A3

A2

Al

A0
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[
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|
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Fig. 9-4. The switch input port can be addressed as a read-only memory location.
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Beam of

light
Light Light
source sensor

Fig. 9-5. Broken beam detectors are another popular approach for intrusion
detection.

HEAT SENSOR

Security systems are not just for protection against intruders.
They are also used to warn against unsafe conditions, especially
fire. The simplest fire alarms are activated by heat. If the ambient
temperature around the detector rises above a specific point, the
alarm is triggered.

Switch type heat sensors are available. They usually look some-
thing like Fig. 9-8. These devices are used essentially in the same
way as the door and window circuits discussed earlier in this chap-
ter. If the temperature exceeds a value (determined by the sensor’s
manufacturer) the switch closes.

A more sensitive heat detector can be built using a thermistor.
This is a thermally-sensitive resistance element. In most cases, the
resistance decreases as the temperature increases. This is referred

Light
shield

Sensor

Fig. 9-6. A shield around the light sensor in a broken beam detector can help
cut down on false triggering problems from external light sources.
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Fig. 8-7. A light sensor circuit for use with the CPU system.

to as a negative temperature coefficient (NTC). Some thermistors
operate with a positive temperature coefficient (PTC). That is, the
resistance rises with the temperature. PTC thermistors are rela-
tively rare.

The circuit shown in Fig. 9-9 uses a NTC thermistor as a
monitoring device, which is triggered when the temperature ex-
ceeds a user determined level. Basically, this circuit is a compara-
tor. A logic-1 bit appears at the output when the thermistor (RT)
resistance is less than that of the reference resistance (RR). If a
potentiometer is used for this reference resistance element, the user

Table 9-1. Parts List for Fig. 9-7.

IC1 Op Amp (1/4 LM324, or similar)
D1 5.1-volt Zener Diode

R1 Photoresistor

R2 68 kQ Resistor

R3, RS 100 k@2 Resistor

R4 1 M@ Potentiometer (Sensitivity)
R6 10 kQ Resistor

Ct 0.1 xF Capacitor
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Fig. 9-8. Switch-type heat sensors
are ideal for use in a CPU-based
security system.

can manually adjust the triggering temperature level. For best ac-
curacy, use a ten-turn trimpot. This high accuracy may or may not
be necessary, depending on the individual application. A general-
ized parts list for this circuit is given in Table 9-2.

Several of these temperature monitoring circuits can be placed
at different strategic locations for maximum protection. Each unit

To
input
port

VW

<
R3 <

AA o AA
VW——N/

Fig. 9-9. This circuit will trigger the CPU if the temperature exceeds a preset
level.
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Table 9-2. Parts List for Fig. 9-9.

IC1 Op Amp (1/4 LM324, or similar)
D1 5.1-volt Zener Diode
Rt Thermistor
R2 68 kQ Resistor
R3, R5 100 kQ Resistor
R4 1 MQ Potentiometer (Sensitivity)
Ré 10 kQ Resistor
(03] 0.1 uF Capacitor
R4
RS
B 4 + R 1 1
IC1A

D
=
AAA
\AA s

8
3

Vv

iq
P
~
AN
v

R13

R9

Fig. 9-10. This more advanced thermometer circuit can indicate five different
temperature ranges.
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Table 9-3. Parts List for Fig. 8-10.

IC1 LM324 Quad Op Amp
D1-D4 5.1-volt Zener Diode
Rt, R3, R4, R6,
R7, R8, R10 100 kQ Resistor
R2 Thermistor
RS, R9 500 kQ Potentiometer (Upper/Lower Range
Set)
R11-R14 10 kQ Resistor
C1-C4 0.1 uF Capacitor

puts out one bit of data to the CPU. Eight such units would make
up a one byte input port. The CPU could be programmed to indi-
cate the location of the triggering high temperature condition. A
variation of this idea is shown in Fig. 9-10 (parts list in Table 9-3).
Here several thermistor comparator stages are used for a four bit

output:

0000
0001
0011
0111
1111

safe temperatures

higher than normal temperatures
suspiciously high temperatures
dangerous temperatures
extremely dangerous temperatures

Other binary codes will never occur.
The CPU can be easily programmed to respond differently to

Test
button

Cut
Detection :: ; Alarm
circuitry sounder
Trigger
voitage
cPU cPU
output input
port 7 port

Fig. 9-11. A commercial smoke detector can be adapted for use with a CPU-
based security system.
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each possible input condition. Two of these 4-bit circuits can be
combined to form a one byte input port.

All of these circuits can easily be adapted to respond to lower
than normal (rather than higher than normal) temperatures where
freezing could be a problem.

SMOKE DETECTORS
Heat sensors are fine and dandy in some applications. Unfor-

( Stat )

y

Update
time

Trigger alarm 4

output

Alarm
indication
input
?

Yes

Error
condition

Fig. 9-12. A flowchart for the smoke detector test routine.
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tunately, most fire related deaths are due to smoke inhalation.
Smoke can reach dangerous levels in many fires without excessive
heat reaching any of the heat sensors. You may want to include
a few smoke detectors to your security system.

The design of a good smoke detector is a little tricky, and the
sensors are not very easy to come by. A complete smoke detector
can be purchased for under ten bucks, so there isn't much point
in going to unnecessary efforts to build our own.

Figure 9-11 shows how a commercial smoke detector may be
adapted for inclusion in a CPU-based security system. The inter-
nal alarm is bypassed, and the triggering signal is sent to the CPU
instead (via bit A). The CPU can distinguish between several smoke
detector units in different locations and indicate the danger area.

Bit B is connected to one of the CPU’s output ports. This al-
lows the CPU to automatically test the smoke detector at pro-
grammed intervals, without disturbing anyone. The alarm will not
go off during the test unless the smoke detector does not respond
correctly to the test. A flowchart for programming this function
is shown in Fig. 9-12.

OUTPUT ALARMS AND INDICATORS

So far we have worked on several methods for letting the CPU
know when an alarm condition exists. Now, we need some way to
allow the CPU to notify us of the condition. Figure 9-13 shows a
simple electronic alarm circuit that can be triggered by a single-
bit output pulse from the CPU. Adjusting the potentiometers will

From +V
computer Amplitier
1 14 (optional)
IC1A -
2 l
c2
$ R1
<

R3 3¢

Fig. 9-13. This circuit is a simple but effective alarm signalier.
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Table 9-4. Parts List for Fig. 9-13.

IC1 CD4011

R1 1 MQ Resistor

R2 47 kQ Resistor

R3 100 kQ Potentiometer (pitch)
Ct1 0.01 uF Capacitor

Cc2 0.1 uF Capacitor

Spkr Small speaker

alter the sound produced. If you prefer, you can replace the poten-
tiometers with fixed resistors. Nothing in this circuit is terribly crit-
ical. The parts list is given in Table 9-4. Several of these alarm
circuits could be placed at various locations.

Another approach would be for the CPU to trigger a standard
12-volt alarm siren or bell. A circuit for accomplishing this is shown
in Fig. 9-14. Different alarm sounding devices could be used to in-
dicate different alarm conditions. For example, a bell could indi-
cate a fire, while a siren could be used for the burglar alarm.

One of the big advantages of using a CPU as a security system
control center is that it can distinguish between the various alarm
triggering devices. A LED indicator panel could be used for a dis-
play of the trouble area, saving time in emergencies.

+5V +12V
0
;4)
¥ £ s
—F| or
siren
From
output
port =

Fig. 9-14. A standard 12-volt alarm or bell can be activated by the CPU.
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Fig. 9-15. Multiple alarm locations can be pinpointed with this 16-bit LED dis-
play panel.
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Figure 9-15 shows a display panel circuit for 16 bits (two bytes).
Each LED corresponds to one of the input devices. Arranging the
LEDs in a convenient pattern (as shown in Fig. 9-16) and labelling
them will allow you to find the trouble spot at a glance and take
appropriate action. This principle can be expanded for any num-
ber of LEDs.

RESET

Any alarm system needs some sort of manual override and/or
reset. If the alarm is falsely triggered, you need to be able to shut
it off. Also, there are times when you don’t want the alarm to func-
tion. It would be very obnoxious if the alarm went off everything
you opened your front door.

The simple circuit shown in Fig. 9-17 will take care of these
problems. Switch S1 is used for override. The program should be
set up so that when S1 is closed, the CPU will ignore all intrusion
alarms, but not the fire alarms.

Switch S2 is a NO pushbutton. Depressing it momentarily will
cause the CPU to cancel out any current alarm condition (turn off

Intrusion

Windows
Front O O O O O Back
door . . door
Living Master Children’s Dining Kitchen
O room bedroom bedrooms room O

O O O O O

Fire

O O O

Front Rear Garage

Fig. 9-16. The LEDs in Fig. 9-15 can be arranged in any convenient pattern.
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Fig. 9-17. This delay circuit will prevent the security alarm from triggering dur-
ing legitimate entry.

the alarm sounder, and extinquish the indicator LED). Once again,
this must be supported with appropriate software.

SOFTWARE

The programming for the security system project will vary con-
siderably depending on the exact application and the options cho-

Table 9-5. A Typical System Might Include These Components.

Door intrusion switches

Window intrusion switches

Smoke detectors

S-range temperature sensor (see Fig. 9-10)

- NN
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Fig. 9-18. Software for a typical security system is illustrated in this flowchart.
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sen for the system. Certain features will probably be common to
all systems. A typical system is outlined in Table 9-5. This table
identifies the input and output devices at each port, or pseu-
domemory location. The software for this particular system is flow-
charted in Fig. 9-18.
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Chapter 10

Test Equipment

F YOU’RE READING THIS BOOK, I THINK IT’S REASONABLE TO

assume that you work with electronics, and know the value of
test equipment. In this chapter we will be using the CPU as a mas-
ter control center for various test equipment applications.

D/A AND A/D CONVERTERS

Most of the signals to be measured in electronic circuits are
analog rather than digital quantities. The CPU can only deal with
digital signals. We need some way to convert between analog and
digital values.

D/A Converter

A D/A (digital-to-analog) converter is used as the CPU’s out-
put ports. It converts the digital values output from the CPU into
a proportional analog voltage. (The basic principles of D/A con-
verters were discussed in Chapter 5.)

A practical D/A converter circuit is shown in Fig. 10-1. The
parts list is given in Table 10-1. This circuit will be used in most
of the projects described in this chapter.

A/D Converter

An A/D (analog-to-digital) converter works in just the opposite
way as a D/A converter. It is used to provide digital input signals
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Fig. 10-1. This is a practical D/A converter circuit.

Table 10-1. Parts List for Fig. 10-1.

IC1 Op Amp (1/4 LM324, or equivalent)
R1, R3, R5, R7,
R9, R11, R13,
R15 9.1 kQ Resistor
R2, R4, R6, R8,
R10, R12, R14,
R16, R17 18 kQ Resistor
(03] 0.47 uF Capacitor
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to the CPU. An existing analog voltage is converted into a propor-
tional binary (digital) value. (A/D conversion was also discussed in
Chapter 5.)

The A/D converter circuit we will be using in the projects in
this chapter is shown in Fig. 10-2. Table 10-2 is the parts list for
this project. Notice that this A/D circuit is considerably more com-
plex than the D/A converter of Fig. 10-1. A/D converters are, by
nature, relatively complicated beasts. So far, no one has devised
a way around this. Both D/A converters and A/D converters are
available in IC form, but A/D converter chips tend to be more ex-
pensive, because of the necessary circuit complexity.

VOLTMETER

The simplest CPU-based test equipment project is a digital volt-
meter. The input stage is simply an A/D converter that converts
the analog voltage into a binary byte, which is then displayed in
BCD format by the CPU.

Why should we bother with the CPU at all? Many inexpensive
digital voltmeters are available. There are several useful tricks we
can do with a CPU-based voltmeter that would not be possible with
a more traditional instrument. I'll just give a few suggestions here.

The CPU can remember past measurements and compare
them. Often we only need to know if the voltage is going up, going
down, or remaining steady. Figure 10-3 offers a circuit for display-
ing this information directly on three LEDs. The parts list is given
in Table 10-3. As shown here, this circuit would be connected to
an output port as pseudomemory (write only) location &HFF AO0.
Latches are used, so the LEDs will remain lit, even when the CPU
is working on other tasks.

Table 10-2. Parts List for Fig. 10-2.

IC1 TL507

IC2 74LS04 Hex Inverter

IC3 74L502 Quad 2-input NOR Gate
IC4, IC5 74L.S193 Counter

IC6 74LS08 Quad 2-Input AND Gate
IC7 555 Timer

IC8 7418374 A/D Converter

R1 4.7 kQ Resistor

R2 220 2 Resistor

R3 10 kQ Resistor

C1 500 pF Capacitor
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Fig. 10-2. This is a practical A/D converter circuit for use with the projects in
this chapter.

Figure 10-4 is a flowchart for a simple program utilizing this
circuit. The input voltage is periodically sampled. Each sample is
compared to a previously stored value in register B, and an appropri-
ate value is stored in &HFF AQ. There are only three possible out-
put values:

001 SAMPLE > B
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Once the output procedure is completed, the current sample
value replaces the old comparison value in register B, and the cy-
cle repeats. The displayed data is constantly updated.

The CPU can also keep track of how rapidly a voltage changes.
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Q 01 Lower

11 Same
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i

D2 R2

IC1B

IC28

|
i

/y

D3 R3

iIC1C

Fig. 10-3. Three LEDs can indicate if a monitored voltage is going up or down,
or remaining stable.

By finding repeating cycles in a changing ac input voltage, the CPU
can measure frequency, and recognize waveshapes. A measured
voltage value can be stored indefinitely.

It is very easy for the CPU to identify the highest (or the
lowest—or both) input voltage within any desired time period. It
can also determine when (how often, and for how long) the input
voltage is outside a specific programmed range.

The CPU-based voltmeter can also be programmed to compen-
sate for voltage offsets. In other words, the CPU-based voltmeter
doesn't just measure the voltage. It can also do quite a bit of analyz-
ing, so the technician doesn’t have to waste time performing cal-
culations, or watching a meter.

Table 10-3. Parts List for Fig. 10-3.

iIc1 Quad 2-Input AND Gate
IC2 Hex Inverter

D1, D2 LED

R1, R2, R3 270 Q Resistor
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Fig. 10-4. This flowchart illustrates typical software for use with the circuit shown

in Fig. 10-3.
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OHMMETER

An ohmmeter, which measures resistance, isn’t much more dif-
ficult to create than a voltmeter. Basically, a known voltage is ap-
plied across a known resistance and the unknown resistance
element. The amount of voltage dropped across the unknown re-
sistance element reveals the resistance value, thanks to the proper-
ties of Ohm’s law.

In an analog ohmmeter, the conversion to the resistance scale
requires a little special circuitry, and the meter reads out non-
linearly. That is, wide-spread values are crammed close together
at one end of the meter scale, and spaced far apart at the other end.

In a CPU-based ohmmeter, we can mathematically derive the
resistance, using Ohm'’s law directly. A simple CPU-based ohm-
meter circuit is shown in Fig. 10-5.

Note that the reference resistor (R ) should be a high-precision
type. Use a resistor with a tolerance rating of 1%, or less. Do not
use a standard 5% or 10% resistor, unless you are willing to ac-
cept very rough readings. The more accurate the reference resis-
tance is, the more accurate the measurements can be.

According to Ohm’s law, the current across any resistance ele-
ment is equal to the voltage, divided by the resistance. That is:

I=ER

In this case, we are concerned with two resistances and
voltages:

I = E/R,
I - ER,

E, is the measured voltage drop across the unknown resistance
element.

Because the full five volts must be dropped across the two resis-
tors, E, + E, = 5volts. Or, 5 - E, = E,. In addition, the current
flowing through two resistors in series will be the same for both
resistance elements. That is:

We can combine these facts to create a single equation:
EX/K( = (6- Ex)/Rr
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Fig. 10-5. In a CPU-based ohmmeter, we can mathematically derive the resis-
tance using Ohm's law.

Algebraically rearranging this equation to solve for R, we get:
R, = ExR)(-E)

R, is a hardware constant, and E, is the measured input voltage,
so the computer can quickly and efficiently perform the calcula-
tion, and determine the value of R..

The advantages of a CPU-based ohmmeter are essentially the
same as those discussed earlier for the voltmeter project.

CAPACITANCE METER

Analog and even dedicated digital voltmeters and ohmmeters
are easy enough to come by. It’s hard to imagine anyone working
with electronics without a VOM (volt/ohm/milliammeter) of some
kind. The computer system offers some special advantages and con-
veniences, but there is nothing new in principle.

Capacitance measurement is another story. Accurately meas-
uring capacitances with analog circuitry is no easy task. Digital ca-
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pacitance meters are available, but they are expensive enough that
most experimenters go without.

Because you already have your CPU breadboard system, you
can set up a capacitance meter for just a little more cost and ef-
fort. A simple go/no-go capacitance meter can use a simple varia-
tion of the ohmmeter circuit discussed earlier. The variant form
is illustrated in Fig. 10-6. The difference is an added momentary
action switch. Pushing this switch shorts out the capacitor’s leads,
allowing it to discharge. Hold the button down for a moment, es-
pecially with fairly large capacitance units to be sure it is fully dis-
charged.

When the switch is released, the capacitor leads are separated,
and the reference voltage is applied across the capacitor. Then the
resistance is measured over time. It should start out relatively high,
drop down to a low value, then build up exponentially back to a
high resistance. This is graphed in Fig. 10-7. The CPU can take
several resistance readings a second, and compare the pattern with
the correct sequence. If the resistance does not change with time
as it is supposed to, the capacitor is defective. If the resistance stays

+5V

A/ID To
——
converter CpPU

C.

Capacitance
to be
measured

<

=

1"

Close
switch
to discharge
capacitor

}
|
|

2

T
10,000

T _
T = Time from O volts to C= -

3.33 volts

Fig. 10-6. A CPU-based capacitance meter is quite similar to an ohmmeter.
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Fig. 10-7. This is a graph of a capacitor’s changing resistance with time.

low, the capacitor is shorted. If it stays high, without the initial drop,
it is probably open.

This test can be performed on any standard analog ohmmeter,
but it is often difficult to guess which range is set the meter on
for best visibility of the pointer movement. Very small capacitors
may change resistance too fast for the pointer to move very far,
or for the eye to see well if it does move. Very large capacitors
may move the pointer so siowly it may be difficult to be sure that
it really is moving. This type of test isn’t at all practical on most
digital chmmeters. The numerical readout will just be a meaning-
less blur until the final resistance value settles.

A CPU makes this approach a lot more convenient. In addi-
tion, with a little additional programming, it can measure the ca-
pacitance with reasonable accuracy. This is done by measuring the
time constant. The time constant is defined as the time it takes a
capacitor to charge up to 67% of its full value (the applied voltage)
through a specific resistance. In other words:

T = RC
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The applied voltage is known, and it is easy enough to calcu-
late the 67% level. The resistance element is the reference resis-
tor of the ochmmeter.

You can find the approximate range of an unknown capacitance
by timing the pointer’s movement on an analog ohmmeter, but it
is virtually impossible to be very precise using manual methods.
The CPU, on the other hand, can make timing measurements pre-
cise to a fraction of a second. Once time T is known, the CPU can
easily calculate the value of C:

C=TR

The appropriate programming for this project is flowcharted
in Fig. 10-8. Most commercial digital capacitance meters use some
variation on this basic approach.

SEMICONDUCTOR TESTER

A semiconductor junction theoretically allows current to pass
in one direction, but not in the other. In more practical terms, with
one polarity of applied voltage, the resistance is very low. When
the polarity is reversed, the resistance is very high.

Diode and bipolar transistor junctions can be measured on any
standard ohmmeter, but it is awkward at best, especially with a
transistor’s three leads. Keeping the sequence of lead connections
and polarities straight can be tricky. This is a good task to turn
over to a computer.

A semiconductor testing circuit is shown in Fig. 10-9. The com-
puter outputs a series of three-bit binary values and measures the
resistance for each combination. It then compares the relative
results with a stored table to determine if the transistor is good
or not.

If a diode is being tested, connect it across E and B. An input
from the keypad could be used to tell the CPU what type of device
to expect. For example, 1 for diode, or 2 for bipolar transistor.

A simple go/no-go test program is shown in the flowchart of
Fig. 10-10. With a little ingenuity, you could extend this program
for the CPU to actually calculate the alpha and beta of a transistor
and/or to test other semiconductor devices.

DIGITAL CIRCUIT TESTS
The CPU can also be used to test other digital circuits in several
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Fig. 10-8. Typical software for the capacitance meter is shown in this flowchart.
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Fig. 10-10. This flowchart shows the software for a simple go/no-go semicon-
ductor test.
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different ways. A very useful piece of test equipment for digital
work is the logic probe. This is simply a one-bit testing device that
indicates if the signal at the test point is a logic 1, a logic 0, or a
train of pulses (switching back and forth between states). An intel-
ligent CPU-based digital probe, can compare several different test
points, determine when the logic state changes, the frequency and
duty cycle of a pulse train, and other useful information, depend-
ing on the programming used.

A simple four-bit digital probe circuit is shown in Fig. 10-11.
It can simultaneously monitor four different test points. The parts
list is given in Table 10-4. The ground clip must be connected to
the ground of the circuit being tested. The test probes should be

!——02

R2
”
Probe R1 D1
clips ¢——am~—— IC1A —»
/ s R4
N\¢ D2
R3 \ \i To
<+—wW— IC1B * —»CPU
/ $ R6
+—— IC1C >
ﬂ 2
/
a7 \ D4 [ ] /o
+«—wr— IC1D >
8
Gnd
clip

Fig. 10-11. This simple 4 bit digital probe circuit can perform many useful tests.
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Table 10-4. Parts List for Fig. 10-11.

IC1 CD4050 Hex Noninverting Buffer
D1-D4 LED

R1, R3, R5, R7 10 kQ Resistor

R2, R4, R6, R8 470 Q Resistor

a spring-loaded hook, as illustrated in Fig. 10-12, to free the tech-
nician’s hands.

The digital probes in Fig. 10-12 are connected to an input port.
Similar circuitry could also be connected to an output port to serve
as a digital signal injector. The CPU would then be able to insert
a specific logic state into a specific point in the circuit, and digital
probes can then monitor the effects.

Another application would be to test digital ICs. There are
hundreds of possible combinations, so we will be very general here,
and limit our discussion to simple gates. Figure 10-13 shows a three-
byte tester for 8-pin ICs. Sixteen-pin (and 14-pin) devices would
require two of these circuits, and six bytes from the CPU. Because
the additional circuitry for larger ICs would simply be redundant,
we will limit our discussion to the 8-pin version, even though there
are actually very few 8-pin digital ICs.

The three bytes are divided into two output ports and one in-
put port.

The first output port allows the CPU to define specific pins
as inputs or outputs. Notice that the power connections must be
made manually. This information can usually be obtained from the
manufacturer’s specification sheet or from a data book. If the pinout
is not available, the CPU could conceivably be programmed to test
all the possible combinations and deduce which are outputs and
which are inputs.

Once the pinout has been determined, and port 1 has set up
the proper signal routing, the CPU outputs each possible input com-
bination in sequence (through port 2), and monitors the effects on
the chip’s outputs through port 3 (the input port). There are so many
different possible approaches to this system, a generalized software
flowchart would probably be of little value.

COMPUTERIZED OSCILLOSCOPE FUNCTIONS

Many exciting applications are possible when a CPU is com-
bined with an oscilloscope. The most direct marriage of an oscillo-
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Fig. 10-12. A spring-loaded hook makes a good probe for the circuit shown
in Fig. 10-11.

scope and CPU would be for the CPU system to memorize a
digitized equivalent of a waveform. It can then be fed back into
the oscilloscope to be studied as long as you like. This is very use-
ful for examining brief, nonrecurring signals. A true storage scope
would cost well over a thousand dollars. Our CPU breadboard sys-
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Fig. 10-14. An oscilloscope/CPU combination can be an extremely powerful
piece of test equipment.

tem can inexpensively add “quick and dirty’’ storage capabilities
to any oscilloscope. A block diagram of such a system is shown
in Fig. 10-14.

The CPU could also manipulate the stored waveform almost
any way you might like. Some possibilities include:

O Inverting the signal

O Running the signal in reverse

O Isolating a portion of the signal

0O Comparing two or more stored signals

I’'m sure you can come up with other ideas of your own.

226



Chapter 11

Robots

ANY ELECTRONICS HOBBYISTS ARE GETTING INVOLVED

with robotics. There are at least two regularly published
newsletters on the subject. Because virtually all robots (except for
a few simple toys) are CPU based, they are a natural for inclusion
here.

If you're like most people, however, you may not have had
much personal experience with robots. Most people’s ideas about
robots come from science fiction movies. If you're expecting to build
C3PO, you might as well forget about it. Nobody—not even the big-
gest, best equipped major laboratory—can build that kind of robot.
at least not yet. The technology does not yet exist.

One of the first things you’ll have to give up is humanoid ap-
pearance. It is exceedingly difficult to get the weight balanced prop-
erly, and to build a walking robot is probably far beyond the
capabilities of any of today’s hobbyists. It’s best to stick with roll-
ing robots—that is, use wheels instead of legs. In appearance, you
can build a robot that looks like R2D2, although it will be consider-
ably less intelligent.

Once again, we will only be giving suggestions for experimen-
tation in this chapter, rather than complete plans for a specific ro-
bot. There are so many possible options. I think it is far better for
each individual hobbyist to design his own system.

BASIC MOBILITY
For our purposes, a robot is a self-mobile computer. Unless
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you want to be stuck with the nuisance of interconnecting wires,
you’ll probably want to make everything as self-contained as pos-
sible. Battery powered operation is almost a must.

Four ni-cad (nickel-cadmium) rechargeable batteries in series
add up to five volts. Use several sets of batteries to power various
stages of the system to avoid undue current drain. Even so, be pre-
pared to have to recharge your batteries often. A robot is going
to use up a lot of power.

To start building a robot, you will need a sturdy base (but not
too heavy). If possible, all heavy components (such as motors and
batteries) should be mounted directly on the base, with lighter
weight circuit boards mounted higher. A top-heavy robot isn’t go-
ing to be of much use for anything. Watching it topple over every-
time it tries to move gets old very fast. For maximum stability, keep
the center of balance in your robot as close to the floor as possible.

Wheels should be attached directly to the bottom of the base.
A triangular arrangement, such as shown in Fig. 11-1 is very sta-
ble. An alternative arrangement is shown in Fig. 11-2. This four
wheel arrangement isn’t inherently more stable, but the extra wheel
offers more control in steering.

The wheels should be turned via a simple dc motor. The mo-
tor must be powerful enough to carry the entire weight of the com-
pleted system without strain, but you don’t have to go overboard.
A motor that can handle 100 pounds is pure overkill in a 25 pound
robot. The over-sized motor will just add to the cost and the bulk
of the unit.

Wheels

Fig. 11-1. A three-wheeled base gives excelient stability.
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Wheels

Fig. 11-2. Two front wheels give added control for steering.

By definition, we want the robot’s motors to be under direct
CPU control. A simple motor control circuit is shown in Fig. 11-3.
Two bits are output from the CPU. The meaning of each combina-
tion is as follows:

00 motor off
01 Motor on (forward)

|c1BVZ__L 2

Fig. 11-3. Two output bits can control forward and reverse motion of the motor.
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10 motor on (reverse)
11 not used

In the reverse mode, the power supply connections to the motor
are simply reversed. This will work for most dc motors.

There are several possible approaches to steering the robot.
One is to physically turn the wheels with gears. Such a gearing ar-
rangement can be tricky to get right. A simpler way is to separate
the control of the wheels on each side of the machine. Powering
the wheels on the right side, for example, will force the robot to
turn on its right axis.

Our basic control circuit is modified in Fig. 11-4 to allow for
steering. Now the control code runs over three bits:

000 motors off

001 all motors on (forward)
010 all motors on (reverse)
011 not used

100 not used

101 right motor on only
110 left motor on only

111 not used

Notice that several control codes are not used. You may expand
the system to take advantage of these unused codes for additional
functions.

You should also notice that this system allows the robot to only
turn in the forward direction. This is because the robot must stop
forward or reverse movement to make a turn.

You can make a turn while moving if you can control the speed
of the wheels. For instance, to turn right, the right wheels should
be turning faster than the left wheels. The greater the difference
in the two speeds, the sharper the turning radius will be (within
certain limits, depending on the physical design of the robot itself).

Control of the robot’s speed while in motion is also a desirable
feature in many applications. A speed control circuit is shown in
Fig. 11-5. The parts list is given in Table 11-1. Variations on this
circuit may be used either to control the robot’s moving speed, or
for turning, or both.

SENSORS

Because our robot is going to move around in the real world,
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Fig. 11-5. This circuit can control the running speed of the motor.
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Table 11-1. Parts List for Fig. 11-5.

IC1, IC2, IC3 CD4066 Quad Bilateral Switch

IC4 CD4049 Hex Inverter

(0] Almost any npn Power Transistor (2N3055, or
similar)

D1, D2 1N4148 Diode

R1, R12 100 k2 Resistor

R2, R11 910 kQ Resistor

R3, R10 330 kQ Resistor

R4, R9 680 k3 Resistor

RS, R8 470 k{ Resistor

R6, R7 560 k) Resistor

C1 0.022 pF Capacitor

it will need some senses of some kind so it can interact with its
environment.

There are many different approaches you can take with robot
sensors. In this section we will briefly look at just a few possibili-
ties. In all computer/design work, imagination is an important in-
gredient, and that is especially true for robotics.

Human beings have five basic senses:

O sight
O3 hearing
O touch
O smell
O taste

Our first thoughts on a robots sensors would probably be
devices to simulate some of these senses, particularly the first three.
Smell and taste aren't likely to be very useful in most robot appli-
cations, although a gas detector or smoke detector could be used
as a pseudo-nose, if appropriate.

For experimenter purposes, detailed robot sight and even shape
detection would be too difficult. Commercial robot manufacturers
are just beginning to make some headway. For our purposes, it may
be best to limit ourselves to simple light/dark differentiation. This
can be accomplished with photocells. A photocell is a light-
sensitive component. There are several variations:

O photcell or solar battery (voltage source)
[0 photoresistor (resistance element)

{J photodiode

O phototransistor
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For the experimenter, photoresistors and phototransistors are
the most useful. A lot of recent hobbyist publications seem to be
treating the photoresistor as if it was obsolete. It is still a very handy
component, and can be used in thousands of circuits. Often the cir-
cuitry will be simpler than if the currently more popular phototran-
sistor is used. In other cases, the reverse is true. Sometimes there
will be no particular advantage one way or the other. The best rule
of thumb is to consider both on a case-by-case basis, and select the
most convenient component for the specific application at hand.

With either photoresistor or phototransistor sensors, the robot
can be programmed to turn towards, turn away from, move to-
wards, move away from, or move parallel to the brightest light or
the darkest area. Large light-colored objects can be distinguished
from large dark objects. Small objects probably can not be detected
using this method.

Figure 11-6 shows a simple photoresistor light detector circuit.
The parts list is given in Table 11-2. Note that this circuit includes
a simple built-in flash (parallel) A/D converter. As the resistance
of the photocell varies, the voltage drop across this component will
change. This voltage is converted to digital form, and fed into the
CPU.

A simpler version is shown in Fig. 11-7. This circuit is an on/off
detector that serves as one input bit to the CPU. If the light level
is above a pre-set level (set via potentiometer R1), a logic 1 is sent.
If the light level is below this point, the sensor circuit puts out a
logic 0.

Several photosensor circuits can be mounted at various points
around the robot’s body (or head, if you prefer). You can design
a robot that can ““see” a full 360° circle, if you like. This would
make it easy for it to locate the lightest or darkest direction with-
out wasted movement.

An interesting use of a photosensor is the track follower sys-
tem. Several photosensors and a small light source are mounted
on the bottom of the robot, as illustrated in Fig. 11-8. Light col-
ored tape (such as ordinary masking tape) can then be placed on
a dark floor. The robot can then be easily programmed to follow
the path laid out by the tape. The light source is needed to com-
pensate for the robot’s own shadow. Otherwise, everything under
the robot will be dark.

Some photocells are designed to respond to infrared light. You
can build a robot that can “‘see” things people can’t. A sound sen-
sor (or robotic ‘“‘ear”’) can be a simple carbon microphone element,
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Fig. 11-6. A photoresistor can serve as robotic eyes.
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Table 11-2. Parts List for Fig. 11-8.

IC1 LM324 Quad Op Amp

R1, R3 22 kQ Resistor

R2 Photoresistor

R4, R10 500 kQ Potentiometer (range controls)
R5-R9 10 kQ Resistor

which can usually be purchased from a parts dealer for a dollar or
two.

Speech recognition will probably be beyond the capabilities of
most experimenters, but it’s not hard to devise a circuit for detect-
ing a loud burst of sound, such as a hand-clap, or a loudly spoken
word. A typical circuit is shown in Fig. 11-9. The parts list is given
in Table 11-3. The potentiometer is used to adjust the microphone’s
sensitivity.

To
CPU

/)

R2 -

s oL

Fig. 11-7. This is a simpler on/off light detector circuit.
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Robot

Photo sensors

Refiective tape

Fig. 11-8. Photocells and a light source mounted on the underside of a robot
permit it to follow a path laid out with light colored tape.

It’s not hard to work up a simple sequential code. Different
numbers of sound pulses in a specific time limit will correspond
to different commands. For example:

1 pulse move forward
2 pulses turn right

3 pulses turn left

4 pulses stop

You might even be able to fool some of your friends into think-
ing the robot is responding to verbal commands, by controlling your
word count. For instance:

C(GOD’

“TURN RIGHT”

“NOW TURN LEFT”

“ALL RIGHT, STOP NOW”

Once again, the key is to use your imagination.

A somewhat different approach is to include a tone decoder
in the sound sensor circuit. The sensor will only respond to sounds
of a specific frequency. The robot can now be controlled via a small,
self-contained tone generator circuit. Different commands can be
activated using a pulse sequence code, as described above, or differ-
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Table 11-3. Parts List for Fig. 11-9.

IC1, IC2 Op Amp (741 or similar)

IC3 555 Timer

Q1 Almost any npn transistor (2N2222 or similar)
R1 10 kQ Resistor

R2 100 kQ Resistor

R3, R4 3.9 k@ Resistor

R5 1 MQ Potentiometer (sensitivity)

R6, R7 1 kQ Resistor

C1, C2 0.47 uF Capacitor

c3 10 uF Electrolytic Capacitor

C4 0.01 uF Capacitor

MIC Electret condenser microphone element

ent commands can be controlled by different frequencies. Tone con-
trol will tend to be more reliable and controllable than the simple
sound detector. In the example described above, if you knock some-
thing over with a crash, the robot might think you want it to start
moving forward.

Also remember, the robot can conceivably ‘‘hear” things we
can’t. You might consider using ultrasonic tones (frequencies above
20 kHz), or even radio (rf) signals. An antenna can serve as a ro-
botic ear as well as a microphone.

Robotic touch can also be achieved in many different ways.
Probably the simplest is the bumper switch system, illustrated in
Fig. 11-10. If the robot runs into something, a bumper will be
pushed in, closing one of the sensor switches (normally-open
momentary push buttons). The switch closure can easily be digi-
tally encoded and fed into the CPU. When the robot runs into some-

Bumpers

Momentary *———-

push
switches

Fig. 11-10. Simple bumper switches let the robot “‘fesl’” obstacles in its path.
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thing, the programming should tell it to back up a little and change
direction.

There are so many sensor possibilities, we couldn’t possibly
mention more than a tiny fraction of them here. I can only stress
once more—use your imagination.

FRILLS

A hobbyist robot can perform many simple practical tasks. But
let’s admit it, to some extent it’s still something of a glorified toy.
So why not enjoy it with a few frills just for fun?

Blinking LED:s in strategic locations on the robot’s body can
be very impressive, even if the light patterns don’t really mean any-
thing. The LEDs can be under CPU control, or an independent cir-
cuit could handle the decorative flashing lights. The effect is best
when the LEDs are flashed at different rates. Figure 11-11 is a block
diagram of a typical system. The clocks are just simple astable mul-

]
= e

S'C '

Fig. 11-11. Complex patterns of flashing LEDs can be.impressive on a robot,
even if they don’t really serve any practical purpose.

240



o]
R2 R1
AA-S—AAA
e
(3] r
4] 10 14!
- 6
L R4
RISEMA—rgp 3 Ic1
b | —
L C2 1~ 9
4L 1
13
4 ‘F{.S.
RS 2 WA
1

Spkr

Fig. 11-12. This simple circuit generates pseudorandom ‘‘rebotic”” sounds.

tivibrator circuits, set up for different rates. The gates are optional,
but they will increase the number of flash rates. The clock frequen-
cies should not be multiples of each other. This is one possible com-
bination:

0.3 Hz.
0.5 Hz.
1.7 Hz.
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Table 11-4. Parts List for Fig. 11-12.

IC1 556 Dual Timer

IC2, IC3 74191 Counter

IC4 LM386 Audio Amplifier

R1 15 k2 Resistor

R2 2.2 kQ Resistor

R3 500 k2 Potentiometer (Tone Change Rate)
R5 500 k@ Potentiometer (Tone)
R4, R6, R7 4.7 kQ Resistor

R8 100 © Resistor

R9 50 kQ Potentiometer (Volume)
C1,C4 10 uF Capacitor

Cc2 15 uF Capacitor

Cc3 0.1 uF Capacitor

SPKR 8 O Speaker

If any of the flashing rates are made greater than about 5 Hz,
the eye might not be able to distinguish between the individual
blinks. The LED will appear to be continuously lit, although it may
seem to be a little dimmer than normal. Slow clock rates will work
best.

The circuit shown in Fig. 11-12 is another fun frill. It gener-
ates weird “‘robot sounds’ to give your creation more of a tradi-
tional science fiction quality. The parts list for this circuit is given
in Table 11-4.

FOR MORE INFORMATION

It is impossible to do more than just scratch the surface of the
subject of robotics in a single brief chapter like this. If you are in-
terested in this area, a number of fine books in this area have been
published in recent years. The TAB Books Inc. catalog contains
many books on robotics including; How to Design and Build Your
Own Self-Programming Robot by David L. Heiserman (TAB book
No. 1341) Handbook of Advanced Robotics by Edward L. Safford.
Jr. (TAB book No. 1421).
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Chapter 12

Sound Synthesis

OUND SYNTHESIS CIRCUITS HAVE ALWAYS BEEN PARTICU-
larly intriguing to me. Many people are not aware that music
is actually based on mathematical relationships. This suggests that
it is an ideal application for a CPU. In this chapter we will exam-
ine a few of the many possible approaches to computerized music.

INTERFACING WITH AN ANALOG SYNTHESIZER

With a simple D/A converter at the output port, a CPU sys-
tem can easily be made to serve as a super controller for an analog
music synthesizer that allows external control of voltage inputs.
Most modern analog synthesizers use voltage control to adjust all
major parameters of the sound. This allows various oscillators
(sound sources) and filters (sound modifiers) to track each other
precisely. Many complicated effects that would not otherwise be
possible are quite simple to achieve in a voltage-controlled system.

It wasn’t long after the development of voltage control that
someone came up with the idea of the sequencer. This is a circuit
that produces a series (or sequence) of predetermined control vol-
tages in a repeating pattern. A sequencer basically allows the syn-
thesizer to ‘“‘play itself.”

A CPU-based sequencer can be a very powerful device. Some
of the tricks possible here include:

[0 Transposition to another key
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(1 Automated speed changes (even within a single sequence)
O Inversion (notes go up instead of down, or vice versa)
{1 Playing the sequence backwards

(O Pseudorandom variations on the sequence

O Extremely long sequences

0 Mathematically based nonrepeating sequences

O Rhythm changes (even within a single sequence)

If output latches are used, several different independent con-
trol voltages can be outputted by the CPU to control various
devices. The possibilities are limited only by your imagination. If
you’d like to know more about synthesizer systems, allow me to
refer you to two of my earlier books: Electronic Music Synthesizers
(TAB book No. 1167) and Music Synthesizers: A Manual of Design
and Construction (TAB book No. 1565).

DIRECT DIGITAL SYNTHESIS

A CPU can generate sounds directly, just by outputting a
repeating pattern of binary numbers into a D/A converter. If the
numerical pattern repeats itself within the audio range (20 to 15,000
times a second) an audible tone will be produced. If we look at this
signal with an oscilloscope, we will see a periodic waveform of some
kind. Theoretically, any conceivable waveform can be generated
in this fashion. Some examples are illustrated in Fig. 12-1.

A variation on this idea is to feed an audio signal into the CPU
via an A/D converter. The CPU can then manipulate the digital-
ized signal in any of an almost infinite variety of ways before it is
fed back out through the D/A converter. In addition, the digitized
signal can be stored indefinitely, and rerecorded as many times as
you like without an increase in distortion or noise. Digital synthe-
sis techniques are a complex topic. It would require a complete book
to even begin to cover this topic.

PSG

General Instruments makes a powerful sound generator IC that
is ideal for our purposes here. It is a complete sound synthesizer
on a single chip. It is designed to be operated under computer con-
trol. Therefore, it can easily be interfaced with our CPU system.

General Instruments calls this device a PSG, or Programmable
Sound Generator. 1t is available in two versions. The AY-3-8910,
shown in Fig. 12-2 is a 40-pin IC and has two built-in 8-bit I/O ports.
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Fig. 12-1. Theoretically, any conceivable waveform can be generated digitally.

The AY-3-8912, shown in Fig. 12-3, is in a 28-pin package and has
just a single 8-bit I/O port. There are no other differences between
the two versions.

The 1/0 ports are provided for use with commercial computer
systems with a limited number of I/O ports accessible to the user.
The PSG will use up one of these ports. The 1/O port(s) built into
the PSG replace the used up ports.

In our system we can interface directly to the CPU and use
memory mapped I/O. There is no particular need to conserve [/O
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21| 10A0

AY-3-8910

Fig. 12-2. The Av-3-8910 PSG in a 40 pin-programmable synthesizer chip with
two full eight bit I/O ports.

ports. The 28-pin AY-3-8912 version will be adequate for our needs,
because we probably won't be using the built-in PSG 1/O ports. Of
course, if you have a AY-3-8910 available, there is no reason why
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you can’t use it. Just be sure to compensate for the differences in
pin numbering. Compare Figs. 12-2 and 12-3.

A block diagram of the PSG’s internal circuitry is shown in Fig.
12-4. You can see that it is a complete sound synthesis system on
a chip.

The subsections of the PSG are fairly straightforward in con-
cept. There are six primary types of modules:

O tone generators
O noise generator

\J
Analog channel C | 1 28 | DAO
Test1 | 2 27| DA1
Vec (+5V) | 3 26 | DA2
Analog channel B E 25| DA3
Analog channel A E 24| DA4
Vss (gnd) | 6 23 | DAS
I0A7 | 7 22| DA6
10A8 | 8 21| DA7
IOAS5 | 9 20| BCt
I0OA4 | 10 19 | BC2
10A3 ] 11 18| BDIR
I0A2 | 12 17| A8
10A1] 13 16 | Reset
IOA0 | 14 15 | Clock
AY-3-8912

Fig. 12-3. The 28 pin AY-3-8912 is identical to the AY-3-8910, except it has
onty one 1/O port.
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Fig 12-4. The PSG is a complete sound synthesis system on a single IC chip.

7 mixers

O amplitude controllers
O envelope generators
O D/A converters

The tone generators are the starting point for most musical
sounds. They are essentially square wave generators. The PSG has
three tone generators. They may be used together or independently.
The tone generators offer a wide range of output frequencies, de-
pending on the clock frequency used (explained later in this chap-
ter). The tone generators can cover the entire audible spectrum
(20 Hz to 20 kHz), plus considerable subaudible (below 20 Hz) and
ultrasonic (above 20 kHz) frequency ranges.
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The noise generator is used for percussive type effects. It
produces a nonperiodic waveform without a definite frequency. Ac-
tually this is a frequency-modulated pseudorandom pulsewidth
square-wave signal. It sounds pretty much like random noise, and
that’s what counts.

The mixers do just what their name implies. They mix together
the outputs of the three tone generators and the noise generator,
as desired by the user for each output channel. There are three
output channels, and one mixer for each channel.

The amplitude controllers are essentially volume controls for
the internal D/A converters. A fixed amplitude can be set directly
under CPU control, or a variable amplitude pattern can be achieved
via the envelope generators.

The envelope generator, produce amplitude envelope patterns
for automatically changing volume levels for a signal. This is a form
of amplitude modulation. Both the shape and the cycle of the enve-
lopes are user selectable. Finally, each output channel has its own
built-in 16-step D/A converter.

On the software level, the PSG is set up much like a slave CPU.
It relies heavily on sixteen internal registers, which are similar to
the internal registers of the CPU itself. The 16 PSG registers are
described as follows:

RO/R1 A tone period

R2/R3 B tone period

R4/R5 C tone period

R6 Noise period

R7 Enable

R10 A amplitude

R11 B amplitude

R12 C amplitude

R13/R14 Envelope period

R15 Envelope shape/cycle
R16 1/0 port A data strobe
R17 /O port B data strobe (8910 only)

Note that the registers are numbered in octal format. The register
functions are outlined in more detail in Table 12-1.

The PSG'’s registers are memory mapped. As far as the CPU
is concerned, they look like a 16-byte block out of 1024 possible ad-
dresses. The appropriate register is selected via the four low-order
data/address bits on the PSG bus (DAO through DA3). The other
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four data/address bits must be at logic 0. A9 must also be 0, and
A8 must be 1 to address a PSG register.

Once the register has been selected, the eight DA bits are used
to carry data for either a write or PSG (load register) or read from
PSG operation. The type of operation is determined by the logic
states of the BDIR, BCl1, and BC2 pins, as follows:

BDIR BC1 BC2 PSG FUNCTION
0 1 0 inactive (DA0-DA7 in high im-
pedance state)

0 1 1 READ FROM PSG

1 1 0 WRITE TO PSG

1 1 1 LATCH ADDRESS (DA0-DA3
contain register address as de-
scribed above)

Note that BC1 is a logic 1 for all valid function states.
The timing of a typical PSG command sequence will follow this
pattern:

O Bus Controls set up Inactive State

O Bus Controls set up Latch Address State (register address
placed on data bus)

O Bus Controls set up Inactive State (data placed on data bus
by PSG or CPU)

O Bus Controls set up Read from PSG or Write to PSG state

0O Bus Controls set up Inactive State

Multiple reads and writes can be performed on a single regis-
ter without readdressing the register. This can be handy in some
programs.

Let’s examine how the data from the CPU controls the PSG’s
functions. For convenience, all values in the equations will be given
in decimal form.

The Tone Period of each tone generator is defined by two
registers, a 4-bit Coarse-Tune register (R1, R3, or R5) and an 8-bit
Fine-Tune register (R0, R2, or R4). We will identify the data values
as CT (Coarse-Tune) and FT (Fine-Tune). The Tone Period (TP)
is then equal to:

TP = 256CT + FT
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For example, if CT = 5, and FT = 133, the Tone Period would
work out to:

TP = 256 x 5 + 133
= 1280 + 133
= 1413

The Tone Period is then combined with the clock frequency (CL)
to find the tone frequency, using this formula:

F = CL/16TP

If, for instance, the clock frequency (CL) is 2 MHz (2,000,000
Hz), the frequency for our sample Tone Period would work out to:
F = 2000000/(16 x 1413)
2000000/22608
88.5 Hz

The Noise Period (NP) (register R6) determines the basic fre-
quency of the noise signal. It acts something like the cut-off fre-
quency of a filter. The equation for the Noise Frequency is as
follows:

F, = CL/16NP
Register 7 is labelled Enable. It is used to turn on and off the
signals to the channel mixers, and to control the I/O ports. The first

three bits control the tone generators:

B0 Bl B2 tone enabled on channel

C
C
C
Cc

-0 OO0
—__O O - O
OO O O
|
I W

The next three bits (B3, B4, and B5) perform the same func-
tion for the noise signal:
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B3 B4 B5 noise enabled on channel
0 0 0 ABC
0 0 1 AB -
0 1 0 A-C
0 1 1 - -C
1 0 0 -BC
1 0 1 - B -
1 1 0 A - -
1 1 1 - - -

The last two bits (B6 and B7) control the function of the I/O
ports. Bit B6 controls I/O port A, and bit B7 controls 1/O port B.
For both of these control bits, a logic 0 sets the appropriate port
for input, and a logic 1 sets it for output. Since the 8912 version
omits the second I/O port, bit B7 is simply ignored in this version.
The PSG doesn’t care about its value.

The next three registers (R10, R11, and R12) control the am-
plitude, or volume, of each analog output channel. The three highest
bits (B5, B6, and B7) are not used. Bit B4 is a mode-control switch.
When this bit is a 0, the amplitude is controlled by the remaining
four bits (B0-B3), giving sixteen discrete volume levels. If bit B4
is made a 1, bits B0 through B3 will be ignored, and the amplitude
will be controlled by the envelope generator.

Note that an output channel cannot be turned completely off
by disabling all of the inputs in register R7. To turn off a channel,
set its amplitude to 0000 in the appropriate amplitude control
register.

If bit B4 of the amplitude register is set to 1, the amplitude
is controlled by the PSG’s internal envelope generator. The enve-
lope parameters are set via registers R13, R14, and R15.

Registers R13 and R14 are used to determine the period of one
complete envelope period, that is, how long the envelope will last.

.R14 is the most significant byte (Coarse Tune), and R13 holds the
least significant byte (Fine Tune). The total envelope period (EP)
can be calculated with this equation:

EP = 256CT + FT
The envelope frequency is then equal to:
F, = CL/256EP
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Fig. 12-5. Four control bits can select ten different envelope patterns.
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Table 12-2. Parts List for Fig. 12-6.

IC1 CD4009 Hex Inverter
IC2 74C32 Quad 2-Input OR Gate
IC3 AY-3-8912 PSG

IC4 LM386 Audio Amplifier
R1 1 kQ Resistor

R2 470 Q Resistor

R3 5.1 kQ Resistor

R4 10 Q Resistor

C1 0.1 xF Capacitor

Cc2 10 uF Capacitor

Cc3 2.2 uF Capacitor

C4 330 pF Capacitor

C5 0.047 uF Capacitor

Cé 220 uF Capacitor
SPKR 8 O Speaker

where CL is the system Clock frequency.

Register R15 is used to control other aspects of the envelope.
Only four bits (B0 through B3) are used in this register. The upper
bits (B4 through B7) are ignored. The four active bits in register
R15 are identified as follows:

B0 Continue
Bl Attack
B2 Alternate
B3 Hold

These four control bits interact to create ten different enve-
lope patterns, as illustrated in Fig. 12-5. Note that ‘‘x” means “don’t
care.” Any bit marked “x’’ may be either a 0 or a 1, without af-
fecting the envelope pattern in any way.

A complete interfacing circuit for the AY-3-8912 PSG is shown
in Fig. 12-6. The parts list is given in Table 12-2. Remember that
if you use the 40-pin AY-3-8910 version, you will need to change

some of the pin numbers. Refer back to Figs. 12-2 and 12-3.
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Chapter 13

Programming

O CPU BASED PROJECT IS GOING TO BE ANY GOOD AT ALL

without software, or programming. A program is simply a
set of instructions in sequence, for the CPU to execute. When writ-
ing software, it is a good idea to bear two seemingly contradictory
facts in mind: The biggest advantage of computers is that they do ex-
actly what they are told. The biggest disadvantage of computers is that
they do exactly what they are told.

Computers follow instructions precisely. This means that they
will come up with predictable and consistent results. Running the
same program repeatedly with the same data will give the same
results. This is handy for confirming results, or to locate errors in
the software (called ‘‘bugs’’).

By the same token, computers are very literal-minded beasts
with no trace of common sense. If you make an error—no matter
how minor—the computer will make no corrections. If the CPU
doesn’t recognize a command code, it will reject the instruction (the
program will “bomb”’). More troublesome is what happens if you
type in the wrong (but valid) command code. The CPU will assume
you meant it to do precisely what the instruction says, even if it
has to go into an endless loop, trying to solve an impossible task.
Similarly, the CPU has no way to recognize and question (or re-
ject) nonsensical data, unless a test routine is included in the
program.

People talk a lot about computer errors. Actually, computers
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very rarely make mistakes. Usually if the problem stems from the
computer itself, it will just lock up and refuse to do anything. While
computers generally don’t make mistakes, programmers and com-
puter operators (being human) often do, and the computer gets
blamed. If your program doesn’t do what you expected, you prob-
ably made a mistake somewhere along the line. It is not likely to
be the CPU’s fault.

Fortunately, except for a few rare heavy robotic projects, an
error in the program will do no damage to the equipment. You can
try again. Don’t be afraid to experiment with your programming
to find out what various commands might do under various circum-
stances. The worst that will happen is that the program won’t work.
No lasting damage will be done.

You will need to write your own software for all of the projects
in this book. Because this book deals with customized projects with
many different options, it is impossible for me to include finished
programs here. This chapter will briefly cover the basics of pro-
gramming. Unfortunately, there is not enough space to go into the
subject in detail in this volume. Several good books on machine
language and assembly language programming are available.

A lot of hobbyists are skeptical about their ability to learn ma-
chine and assembly language. Actually, once you get the hang of
it, it isn’t all that difficult. It 4s tedious detail work, and you have
to pay close attention all along the way. It is all too easy for errors
to sneak in. It is a good idea to doublecheck all your work regularly.

Your first few programs will probably take you a few hours
to get right. It gets easier with practice. Start by programming rela-
tively simple tasks, sticking to the basics. You can add frills and
special features later.

Even an experienced programmer rarely gets everything right
on the first draft of a program. At least half the effort involved in
writing a program goes to debugging (locating and correcting er-
rors). The secret of machine/assembly language programming is
to work slowly, take plenty of breaks, doublecheck your work fre-
quently, and be patient.

MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

If you have experience working with personal computers, you
probably have at least some familiarity with one of the high-level
programming languages, such as BASIC, COBOL, LOGO, or Pas-
cal. English-like words are used for the various commands. For ex-
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ample, in BASIC, if you want to print out some data, you type in
the command word, “PRINT.”

Unfortunately, a CPU does not understand any high level lan-
guages. It can only understand machine language. In a personal
computer that is programmed in BASIC, a special translation pro-
gram is included in ROM. This translator converts the high-level
language commands into machine-language commands. Some high-
level language commands may translate into several machine-
language commands.

1t is undeniably easier to program in a high-level language. The
meanings of the command statements are clearer. Common tasks
may be called up with a single word, even if the CPU requires a
dozen or so machine-language instructions to execute the routine.
But a high-level language comes at a price. A translation program
must be written in machine language, and it must be placed in the
computer’s memory, preferably in ROM. High-level language pro-
grams generally run somewhat slower than comparable machine-
language programs. The high-level commands also tend to use up
more memory. Because alphanumeric characters are used to spell
out the high level commands, a full ASCII keyboard is required.

For our purposes in the projects described in this book, a high-
level programming language would probably be more trouble than
it’s worth. We will only have to write relatively simple, and short
programs for these projects, so the inherent awkwardness of ma-
chine language won’t be too great a burden.

If you have done much work with computers, you probably have
at least heard of assembly language. Assembly language is a sort
of compromise language. Each machine-language command is given
a two, three, or four letter name (or mnemonic), such as ADD, or
LD (LoaD). This is easier to read and remember than strings of
1’s and 0’s. A translation program is required to run an assembly-
language program directly on a CPU. Each mnemonic is converted
into the appropriate binary number.

To avoid the need for a translation program and an alphanu-
meric keyboard, I have limited the projects in this book to direct
. machine-language programming. The commands can be entered
as hexadecimal numbers to avoid the confusion caused by large bi-
nary numbers. 5C is certainly easier to get right than 01011100.

However, when in the initial stages of writing your programs,
it will probably be easier to use the assembly-language mnemonics.
When the program looks good on paper, you can manually convert
the assembly-language commands into hexadecimal machine-
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language code. It is admittedly a rather tedious job, but it is not
too difficult, at least for short programs. Work slowly, and
doublecheck everything. This will minimize the number of errors.

Don'’t feel bad or frustrated if some errors creep in anyway.
I'd be surprised if they didn’t. Even an experienced programmer
working in a high-level language usually has to do quite a bit of
debugging to get a program running right. If you keep good notes,
work carefully, and concentrate on one step at a time, your errors
should be fairly easy to locate and correct. Some errors can be very
subtle and sneaky. This is just part of the nature of computer pro-
gramming. Expect such problems to crop up now and then, so they
won't be too unpleasant a surprise.

Z80 COMMANDS

The types of commands used by the Z80 were introduced in
Chapter 3. The entire instruction set of this CPU is listed in Ap-
pendix A. Appendix B gives the hexadecimal machine-language
equivalent for each available command. Use this appendix for the
translation process.

FLOWCHARTS

A very useful tool in writing and debugging computer programs
is the flowchart. A flowchart is simply a graphic illustration of the
various steps in a program. It allows you to see and easily follow
the “flow” of the program. Several flowcharts were presented in
some of the earlier chapters. The symbols used in flowcharts are
not entirely standardized. You can use any system you like, as long
as you are consistent. Usually different shapes are used to indicate
different types of functions. The basic shapes I generally use are
shown in Fig. 13-1.

A squashed oval indicates a START or END point for a program
or routine. A diamond is used to represent a decision or compari-
son test to be performed by the CPU. For example, is A > B? A
test block has two exit paths. If the expression being tested is true,
the next step will be indicated on the “YES” line. If the expres-
sion being tested is not true (false), the program will proceed along
the “NO” line.

A rectangle is used for INPUT and OUTPUT operations. Finally,
a square is used for any functions not covered by the other symbols.

In writing a program, the first step is to determine what results
are desired, and what data is initially available. Then you have to
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Fig. 13-1. Standardized symbols are used in programming flow-charts.

figure out what steps will need to be taken to get from the avail-
able data to the desired results.

In complex programs it is often convenient to work with several
generations of flowcharts. The first generation outlines steps in
broad blocks. For example, one step might be indicated as *“Con-
vert Decimal Value to Binary Value.” This would take several com-
mands to accomplish, but in the early stages of laying out the
flowchart, you may want to lump them together as a single step.
Later, you will expand each of the steps into individual routine flow-
charts. In each new generation of your flowcharts get more specific.
Eventually, each step on the flowchart will represent a single com-
mand. From this point it’s a simple matter to encode the steps out-
lined in the final flowchart.
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BUILDING A LIBRARY OF SOFTWARE ROUTINES

As you start doing more programming, you will discover that
certain tasks, or routines are frequently called for in many differ-
ent programs. Clearly it is a waste of time to encode the same rou-
tine over and over from scratch.

Write out the programming for any common routine separately,
and keep these routines in a looseleaf notebook. Then, whenever
you need that function in a new program, you just have to type in
the already encoded routine, saving a lot of redundant work. If you
do a lot of programming, a good library of software routines can
save hours of unnecessary work.

FINAL SUGGESTIONS

We have barely scratched the surface of programming in this
brief chapter. The main focus in this book was on the hardware.
I strongly suggest you also read a good book on assembly and ma-
chine language programming.

Remember, machine language programs look terribly impos-
ing, but if you just concentrate on one step at a time, and don’t
make any assumptions (the CPU won’t), it really isn’t too difficult,
just tedious. Like anything else, it takes quite a bit of practice to
become proficient at it.

The best way to learn is to experiment. If you're not sure what
a certain command does, write a program using it in various ways,
and see what happens. You will learn far more about the command
this way, then just reading about it. Don’t feel intimidated about
such experimentation. Remember, even if you use the command
wrong (or make some other mistake), the program will either give
unexpected results, or it won’t work at all. If a program ‘‘bombs,”
nothing will be hurt, except for the program itself. The commands
you enter into RAM might be affected when the program
“crashes.” At worst, you'll have to waste a little time, typing the
drogram back in from scratch.

The CPU, and other computer circuitry is completely un-
affected by software errors. The CPU will try to execute all com-
mands it can recognize. If it can’t recognize a command, or if a
command is impossible to execute, the CPU will simply stop run-
ning the program and wait until you give it proper instructions.
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E Appendix A

The Z80 Instruction Set
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Instruction Classifications
A REGISTER OPERATIONS
Complement CPL
Decimal DAA
Negate NEG

ADDING/SUBTRACTING TWO 8-BIT NUMBERS

A and Another Register
ADCA, r
ADDA, r
SBCA, r
SUBA, r

A and Immediate Operand
ADCA, n
ADD A, n
SBCA, n
SUBA, n

A ana Memory Operand

ADC A, (HL)
ADC A, IX+4d)
ADC A, (IY +d)
ADD A, (HL)
ADD A, (IX+d)
ADD A, (IY+d)
SBC (HL)

SBC (IX+4d)
SBC (IY +4d)
SUB (HL)

SUB (IX +4d)
SUB (IY +4d)

ADDING/SUBTRACTING TWO 16-BIT NUMBERS
HL and Another Register Pair

ADC HL, ss
ADD HL, ss
SBC HL, ss
IX and Another Register Pair
ADD IX, pp
ADDIY, rr
BIT INSTRUCTIONS
Test Bit
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Register BITb, r

Memory BIT b, (HL)
BIT b, (IX+d)
BIT b, (IY+d)

Reset Bit
Register RESDL, r
Memory RES b, (HL)
RES b, (IX+d)
RES b, (IY+d)
Set Bit
Register SETb, r
Memory SET b, (HL)
SET b, (IX+4d)
SET b, (IY +4d)
CARRY FLAG

Complement CCF
Set SCF

COMPARE TWO 8-BIT OPERANDS
A and Another Register
CPr
A and Immediate Operand
CPn
A and Memory Operand
CP (HL)
CP (IX+d)
CP (IY +d)
Block Compare

CPD
CPDR
CPl
CPIR

DECREMENTS/INCREMENTS
Single Register
DECr
INCr
Register Pair
DEC ss
INC ss
DEC IX
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Memory

EXCHANGES
DE and HL
Top Of Stack

INPUT/OUTPUT

INC IX
DECIY
INCIY

DEC (HL)
INC (HL)
DEC (IX +d)
INC (IX+d)
DEC (IY +d)
INC (IY +d)

EX DE, HL
EX (SP), HL

EX (SP), IX
EX (SP), IY

I/O To/From A and Port

IN A, (n)
OUT (), A

I/0 To/From Register and Port

Block

INTERRUPTS
Disable
Enable
Interrupt Mode
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INt, (C)
OUT O), r

IND
INDR
INR
INIR
OTDR
OTIR
OUTD
OUTI

DI
EI

IMO
M1
IM2



Return From Interrupt
RETI
RETN

JUMPS
Unconditional
JP (HL)
JP (IX)
JP (IY)
JP (nn)
JRe
Conditional
JP cc, nn
JRC, e
JRNZ, e
JRZ e
Special Conditional
DJNZ e

LOADS
A Load Memory Operand
LD A, (BC)
LD A, (DE)
LD A, (nn)
A and Other Registers
LDA,I
LDA,R
LDI A
LDR, A
Between Registers, 8-Bit
LDr,
Immediate 8-Bit
ILDr, n
Immediate 16-Bit
LD dd, nn
LD IX, nn
LD IY, nn
Register Pairs From Other Register Pairs
LD SP, HL
LD SP, IX
LD SP, IY
From Memory, 8-Bits
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LD r, (HL)
LD r, (IX+d)
LDr, Y +d)
From Memory, 16-Bits
LD HL, (nn)
LD IX, (nn)
LD IY, (nn)
LD dd, (nn)
Block
LDD
LDDR
LDI
LDIR

LOGICAL OPERATIONS 8 BITS WITH A
A and Another Register
ANDr
ORTr
XORr
A and Immediate Operand
AND n
OR n
XOR n
A and Memory Operand

AND (HL)
OR (HL)
XOR (HL)
AND (IX+d)
OR (IX +d)
XOR (IX+4d)
AND (IY +4d)
OR (IY +4d)
XOR (IY +d)

PRIME/NON-PRIME
Switch AF EX AF, AF’
Switch Others EXX

SHIFTS
Circular (Rotate)

A Only RLA
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All Registers

Memory

Registers
Memory

Registers

Memory

STACK OPERATORS

RLCA
RRA
RRCA

RLr
RLCr
RRr
RRCr

RL (HL)
RLC (HL)
RR (HL)
RRC (HL)
RL (IX +d)
RLC (IX+4d)
RR (IX+d)
RRC (IX+d)
RL (Y +d)
RLC (Y +4d)
RR (IY +d)
RRC (IY +d)

Logical

SRL r

SRL (HL)
SRL (IX+4d)
SRL (IY +4d)

Arithmetic
SLATr
SRATr

SLA (HL)
SRA (HL)
SLA (IX+d)
SRA (IX +d)
SLA (IY +d)
SRA (IY +d)

PUSH IX
PUSH IY
PUSH qq
POP IX
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POP IY

POP qq
STORES
Of A Only
LD (BC), A
LD (DE), A
LD (HL), A
LD (nn), A
All Registers
LD (HL), r
LD (IX+d), r
LDAY+d), r
Immediate Data
LD (HL), n
LD (IX+d), n
LD IY+d), n
16-Bit Registers
LD (nn), dd
LD (nn), IX
LD (nn), IY
SUBROUTINE ACTIONS
Conditional Call CALL cc, nn
Unconditional Call CALL nn
Conditional Return RET cc
Unconditional Return RET
Special Call RSTP
MISCELLANEOUS
Halt HALT
No Operation NOP
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Appendix B

Hexadecimal Instruction

Hexadecimal Instruction

00

01 nn nn
02

03

04

05

06 nn
07

08

09

0A

0B

0C

0D

0E nn
OF
10e-2
11 nn nn
12

13

14

15

NOP

LD BC,nn
LD (BC),A
INC BC
INCB
DECB

LD B,nn
RLCA

EX AF,AF'
ADD HL,BC
LD A, (BC)
DEC BC
INCC
DECC

LD Cnn
RRCA
DJNZ e
LD DE,nn
LD (DE),A
INC DE
INCD
DECD

Codes for the Z80

Hexadecimal

16 nn

17
18e-2
19

1A

1B

1C

1D

1E nn
1IECBd 1E
1F
20e-2
21 nn nn
22 nn nn
23

24

25

26 nn
27

28 e-2
29

2A nn nn

Instruction

LD D,nn
RLA

JRe

ADD HL,DE
LD A,(DE)
DEC DE
INCE
DECE

LD Enn
RR (IY +d)
RRA

JR NZ,e
LD HL,nn
LD (nn),HL
INC HL
INCH
DECH

LD H,nn
DAA
JRZe
ADD HL,HL
LD HL,(nn)
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Hexadecimal Instruction Hexadecimal Instruction

2B DEC HL 55 LD D,L’
2C INCL 56 LD D,(HL)
2D DECL 57 LD DA’
2E nn LD L,nn 58 LD E,B’
2F CPL 59 LD E,C’
30e-2 JR NC,e 5A LD E,D’
31 nn nn LD SP,nn 5B LD EE’
33 INC SP 5C LD EH’
34 INC (HL) 5D LDEL’
35 DEC (HL) 5E LD E,(HL)
36 nn LD (HL),nn 5F LD E,A’
37 SCF 60 LD H,B’
38e-2 JRCe 61 LD H,C'
39 ADD HL,SP 62 LD H,D’
3A nn nn LD A,(nn) 63 LD H,E'
3B DEC SP 64 LD HH'
3C INC A 65 LD HL’
3D DEC A 66 LD H,(HL)
3E nn LD A,nn 67 LD HA’
3F CCF 68 LDL,B'
40 LD B,B’ 69 LD L,C
41 LD B,C’ 6A LD L,D’
42 LD B,D’ 6B LDLE'
43 LD B,E’ 6C LDLH'
44 LD B,H’ 6D LDL,L'
45 LD B,L’ 6E LD L,(HL)
46 LD B,(HL) 6F LD LA’
47 LD B,A’ 70 LD (HL),B
48 LD C,B’ 71 LD (HL),C
49 LD C,C’ 72 LD (HL),D
4A LD C,D’ 73 LD (HL),E
4B LD C,E’ 74 LD (HL),H
4C LD CH’ 75 LD (HL),L
4D LDCL’ 76 HALT

4E LD C,(HL) 77 LD (HL),A
4F LD,C A’ 78 LD A,B’
50 LD D,B’ 79 LD AC!
51 LD D,C’ 7A LD AD’
52 LD D,D’ 7B LD AE’
53 LD D,E’ 7C LD AH'
54 LD D,H’ 7D LD AL’
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Hexadecimal Instruction

7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
S8E
8F
90
91
92
93
94
95
96
96 nn
97
98
99
9A
9B
9C
9D
9E
9E nn
A0
Al
A2
A3
A4
A5

LD A,(HL)
LD AA’
ADD AB
ADD AC
ADD AD
ADD AE
ADD AJH
ADD AL
ADD A,HL)
ADD AA
ADC AB
ADC A,C
ADCAD
ADC AE
ADC AJH
ADC AL
ADC A,(HL)
ADC AA
SUB B
SUBC
SUBD
SUBE
SUB H
SUBL
SUB (HL)
SUB nn
SUB A
SBC A,B
SBC A,C
SBC AD
SBC AE
SBC AJH
SBCA,L
SBC A,(HL)
SBC A,nn
AND B
AND C
AND D
AND E
AND H
AND L

Hexadecimal Instruction

A6

A8
A9
AA
AB
AC
AD
AE
AE nn
B0

B1

B2

B3

B4

B5

B6

B7

B8

B9
BA
BB
BB E3
BC
BD
BE nn
BF

Co

C1

C2 nn nn
C3 nn nn
C4 nn nn
C5

C6 nn
C8

C9
CA nnnn
CB xa
CB xb
CB xc
CB xd
CB xx

AND (HL)
XOR B
XOR C
XOR D
XOR E
XOR H
XOR L
XOR (HL)
XOR nn
OR B
ORC
ORD
ORE

OR H
ORL

OR (HL)
OR A
CPB
CpC
CPD
CPE

EX (SP),IX
CPH
CPL

CP (HL)
CPA
RET NZ
POP BC
JP NZ,nn
JP nn
CALL NZ,nn
PUSH BC
ADD Ann
RET Z
RET

JP Z,nn
RES b,r
RES b,(HL)
SET b,(HL)
SET b,r
BIT b,r
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Hexadecimal Instruction Hexadecimal Instruction

CB xy BIT b,(HL) CB 28 SRA B

CB 00 RLC B CB 29 SRA C

CB 01 RILCC CB 2A SRA D

CB 02 RLCD CB 2B SRAE

CB 03 RLCE CB 2C SRA H

CB 04 RLCH CB 2D SRAL

CB 05 RLCL CB 2E SRA (HL)
CB 06 RLC (HL) CB 2F SRA A

CB 07 RLCA CB 38 SRL B

CB 08 RRC B CB 39 SRL C

CB 09 RRCC CB 3A SRL D

CB 0A RRCD CB 3B SRL E

CB 0B RRCE CB 3C SRL H

CB 0C RRCH CB 3D SRL L

CB 0D RRCL CB 3E SRL (HL)
CB OE RRC (HL) CB 3F SRL A

CB OF RRC A CC nn nn CALL Z,nn
CB 10 RL,B CD nn nn CALL nn
CB 11 RL,C CE nn ADC A,nn
CB 12 RL,D DO RET NC
CB 13 RL,E D1 POP DE
CB 14 RL.H D2 nn nn JP NC,nn
CB 15 RL,L D3 nn OUT (nn),A
CB 16 RL,(HL) D4 nn nn CALL NC,nn
CB 17 RL,A D5 PUSH DE
CB 18 RR B D5 CB d 06 RL (IY +4d)
CB 19 RRC D8 RET C

CB 1A RRD D9 EXX

CB 1B RRE DA nn nn JP C,nn

CB 1C RRH DB n IN A,(n)
CB 1D RRL DC nn nn CALL C,nn
CB 1E RR (HL) DD 09 ADD IX,BC
CB 1F RR A DD 9E d SBC A,(IX +d)
CB 20 SLAB DD 19 ADD IX,DE
CB 21 SLAC DD 21 nnnn LD IX,nn
CB 22 SLAD DD22nnnn LD (nn),IX
CB 23 SLAE DD 23 INC IX

CB 24 SLA H DD 29 ADD IX,IX
CB 25 SLAL DD 2Annnn LD IC,(nn)
CB 26 SLA (HL) DD 2B DEC IX

CB 27 SLA A DD 34 d INC (IX +d)
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Hexadecimal

DD 35d
DD 36 d nn
DD 39

DD 46 d
DD 4E d
DD 56 d
DD 5E d
DD 66 d
DD 6E d
DD 70d
DD 71 d
DD 72 d
DD 73 d
DD 74 d
DD 75 d
DD 77 d
DD 7E d
DD 86 d
DD 8E d
DD 96 d
DD A6 d
DD AE d
DD B6 d
DD BE d
DD CBd xb
DD CB d xc
DD CB d xy
DD CB d 06
DD CB d OE
DD CBd 16
DD CBd 1E
DD CBd 2E
DD CBd 3E
DD E1l

DD E5

DD E9

DD EB d 26
DD F9

EO0

El

E2 nn nn

Instruction
DEC (IX+d)
LD (IX+d),nn
ADD IX,SP
LD B,(IX+d)
LD C,(IX+d)
LD D,(IX +d)
LD E,(IX+d)
LD H,(IX+d)
LD L(IX+4d),
LD (IX+d),B
LD (IX+d),C
LD (IX+d),D
LD (IX+d),E
LD (IX+d),H
LD (IX+d),L
LD (IX+d),A
LD A,(IX+d)

ADD A(IX+D)
ADC A,(IX +4d)

SUB (IX +d)
AND (IX+4d)
XOR (IX +d)
OR (IX +d)
CP (IX+4d)

RES b,(IX +d)
SET b,(IX+4d)
BIT b b,(IX +d)

RLC (IX+4d)
RRC (IX +d)
RL IX+d)
RR (IX +4d)
SRA (IX +d)
SRL (IX+d)
POP IX
PUSH IX
JP (IX)

SLA (IX+d)
LD SP,IX
RET PO
POP IY

JP PO,nn

Hexadecimal Instruction

E3

E4 nn nn
E5

E6 nn

E8

E9

EA nn nn
EB

EB 47
EC nn nn
ED 40
ED 41
ED 42
ED 43 nn
ED 44
ED 45
ED 46
ED 48
ED 49
ED 4A

ED 4B nn nn

ED 4D
ED 4F
ED 50
ED 51
ED 52
ED 53 nn
ED 56
ED 57
ED 58
ED 59
ED 5A
ED 5B nn nn
ED 5E
ED 5F
ED 60
ED 61
ED 63 nn
ED 67
ED 68
ED 69

EX (SP),HL
CALL PO,nn
PUSH IY
AND nn
RET PE

JP (HL)

JP PE,nn
EX DE,HL
LDLA
CALL PE,nn
IN B,(C)
OouUT (C),B
SBC HL,BC
LD (nn),BC
NEG

RETN

IMO

IN C,(C)
ouT (O),C
ADC HL,BC
LD BC,(nn)
RETI
LDRA

IN D,(C)
ouT ©),D
SBC HL,DE
LD (nn),DE
IM1

LD A1

IN E(C)
ouT (O,E
ADC, HL,DE
LD DE,(nn)
IM 2

LD AR

IN H,(O)
OUT (C),H
LD (nn),HL
RRD

IN L,(C)
OouUT (C),L
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Hexadecimal Instruction Hexadecimal Instruction

ED 6A
ED 6B nn nn
ED 6F
ED 72
ED 73 nn
ED 78
ED 79
ED 7A
ED 7B nn nn
ED A0
ED Al
ED A2
ED AB
ED A9
ED AA
ED A3
ED AB
ED BO
ED B1
ED B2
ED B3
ED B8
ED B9
ED BA
ED BB
FO

F1

F2 nn nn
F3

F4 nn nn
F5

F6 nn

F8

F9

FA nn nn
FB

FB E3
FC nn nn
FD 09
FD 19
FD 21 nn nn

288

ADC HL,HL
LD HL,(nn)
RLD

SBC HL,SP
LD (nn),SP
IN A,C)
OUT (C),A
ADC HL,SP
LD SP,(nn)
LDI

CPI

INI

LLDD

CPD

IND

OUT1
OUTD
LDIR

CPIR

INIR

OTIR
LDDR
CPDR
INDR
OTDR
RET P
POP SP

JP P,nn

DI

CALL P,nn
PUSH SP
OR nn
RET M

LD SP,HL
JP M,nn

E1l

EX (SP),IY
CALL M,nn
ADD IY,BC
ADD IY,DE
LD IY,nn

FD 22 nn nn
FD 23

FD 29

FD 2A nn nn
FD 2B

FD 34 d

FD 354d

FD 36 d nn
FD 39

FD 46 d

FD 4E d
FD 56 d

FD 5E d
FD 66 d

FD 6E d
FD 70 d
FD714d
FD72d

FD 73 d

FD 74 d
FD75d

FD 77d
FD7Ed
FD 86 d

FD S8E d
FD 96 d
FDY9E d
FD A6d
FD AE d
FD B6 d
FD BE d
FD CB d xb
FD CB d xc
FD CB d xy
FD CB d 06
FD CB d OE
FDCBd 2E
FDCBd 3E
FD E9

FD EB d 26
FD EF

LD (nn),IY
INCIY

ADD IY,IY
LD IY,(nn)
DEC 1Y

INC (IY +d)
DEC (IY +d)
LD (IY +d),nn
ADD IY,SP
LD B,(IY +d)
LD C,(Y+d)
LD D(IY +d)
LD E,(IY +d)
LD H,(IY +d)
LD L,(IY+d)
LD (IY +d),B
LD (IY+4),C
LD (IY +d),D
LD (IY +d),E
LD (IY+d),H
LD (IY+d),L
LD (IY+d),A
LD A(IY +d)
ADD A,(IX +d)
ADC A,(IY +4d)
SUB (IY +d)
SBC A(IY +d)
AND (IY +d)
XOR (IY +d)
OR (IY +d)
CP (IY+d)
RES b,(IY +d)
SET b,(IY +d)
BIT b,(IY +d)
RLC(IY +d)
RRC (IY +d)
SRA (IY +d)
SRL (IY +d)
JP (IY)

SLA (IY +4d)
PUSH IY



Hexadecimal Instruction Hexadecimal Instruction
FD F9 LD SP,IY FE nn CP nn

xx = Olbr where b = bit field (000 -111) and r = register

000 = B

001 = C

010 =D

011 = E

100 = H

101 = L

111 = A

xy = 01b110
xa = 10br
xb = 10b110
xc = 11b110
xd = 1lbr

289






Appendix C

Sample Computer Programs

HE SAMPLE PROGRAMS ARE INTENDED JUST TO GET YOU

started. They can be changed to suit your individual applica-
tions (see Table C-1). The sample programs are listed in standard
assembly language form. There are six columns:

Column 1 Memory location

Column 2 Machine-language command

Column 3 Line number (for convenient reference)
Column 4 Labels (optional)

Column 5 Assembly-language command

Column 6 Comments

HOW TO ENTER THE PROGRAMS

To enter the program, use the memory stepper to set to the
beginning of the memory (&HO0001). Enter the first two digit
hexadecimal number in column 2 on the keypad. Advance the mem-
ory stepper, then enter the next two digits. Continue with this proce-
dure until all the numbers in column 2 have been entered. The other
columns are given to make the functioning of the program easier
to follow.

DIRECTIONS FOR USING THE EPROM PROGRAMMER
This device is easier to use than it might appear.
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Table C-1. Programs for The Projects.

Project Program Notes
1-6 - Parts of the breadboarding system—no
programs
7-8 —_— EPROM programmer-—instruction sheet
9 1 Ac Controller
10 2 Normally-open Intrusion Detector
11-13 - Programming would be essentially iden-
tical to Project 10
14 3 Multi-Level Temperature Detector
15-18 —_ These projects are to be used with other
projects. No individual programming.
19 4 Ohmmeter
20-22 — Variations on project 19
23 5 IC Tester
24 6 Motor Controller
25-26 — Variations on project 24
27 — Similar to project 10
28 7
29 -— No programming required
30 8
1. Load the program into RAM in the normal manner.
2. Set the memory stepper to 0000.
3. Carefully insert EPROM chip.
4. Hit LOAD button.
5. Advance memory stepper.
6. Repeat steps 4 and 5 until you have stepped through the
entire program.
PROGRAM 1

SAMPLE SOFTWARE FOR PROJECT 9
AC CONTROLLER (FIG. 7-1)

0001 01 02 00 0100 LD BC,0200 ; LOAD BC WITH 1024

0004 OB2B 0110 DECBC ; DECREMENT

0006 00 0120 NOP ; WASTE TIME

0007 00 0130 NOP ; WASTE TIME

0008 CAO0CE 0140 JR Z,000E ; JUMP IF ZERO

000B C30004 0150 JP 0004 ; JUMP BACK

000E 3D 01 0160 LD A,01 ; SET UP SWITCHING
VALUE

0010 321FFF 0170 LD 1FFF ; TO PORT

0013 01 02 00 0180 LD BC,0200 ; REPEAT

0016 0B 2B 0190 DEC BC ; DECREMENT
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0018 00 0200 NOP
0019 00 0210 NOP
001A CA 0020 0220 JR Z,0020
001D C30016 0230 JP 0016
0020 3D 02 0240 LD A,02
0022 321FFF 0250 LD IFFF
0025 C30001 0260 JP 0001
0028 76 0270 HALT

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

SET UP SWITCHING
VALUE

; TO PORT

; START OVER

; END PROGRAM

s we we we we

This program will turn device A on and off repeatedly, with

brief delays between actions.

PROGRAM 2

SAMPLE SOFTWARE FOR PROJECT 10

INTRUSION DETECTOR (FIG. 9-2)

0001 3A1FFD 0100 LD A,IFFD
0004 FEO05 0110 CPO05

0006 CA000C 0120 JP Z,000C
0009 C30001 0130 JP 0001
000C 3D 01 0140 LD A 01
000E 32 1FFF 0150 LD IFFF
0021 C3000E 0160 JP OOOE
0024 76 0170 HALT
PROGRAM 3

: CHECK PORT VALUE

: COMPARE SWITCH
PATTERN

: JUMP IF EQUAL

; JUMP BACK

: LOAD ALARM VALUE

; OUT TO ALARM PORT

; LOOP

; END PROGRAM

SAMPLE SOFTWARE FOR PROJECT 14
MULTILEVEL TEMPERATURE DETECTOR (FIG. 9-10)

0001 3A1FFA 0100 LD A,(1FFA)
0004 FE 03 0110 CPO03

0006 CA 0016 0120 JP Z,0016
0009 FE 07 0130 CP 07

000B CA001C 0140 JPZ, 0001C
000E FE OF 0150 CPOF

0010 CA 0020 0160 JP Z, 0020
0013 C30001 0170  JP 0001
0016 3EO1 0180 LD A,01
0018 C30022 0190 JP 0022
001C 3E 02 0200 LD A, 02

: CHECK INPUT PORT

; HIGH
TEMPERATURE?

; JUMP IF ZERO

; DANGEROUS
TEMPERATURE?

; JUMP IF ZERO

; VERY DANGEROUS
TEMPERATURE?

; JUMP IF ZERO

; JUMP BACK

: SET ALARM VALUE

; JUMP TO ALARM

: SET ALARM VALUE
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001E C3 00 22 0210 JP 0022 ; JUMP TO ALARM

0020 3E 04 0220 LD A, 04 ; SET ALARM VALUE

0022 321FEA 0230 LD 1FEA ; OUTPUT TO ALARM
PORT

0025 C3 0022 0240 JP 0022 ; LOOP

0028 76 0250 HALT ; END PROGRAM

PROGRAM 4

SAMPLE SOFTWARE FOR PROJECT 19
OHMMETER (FIG. 10-5)

0001 EDS8BIFFO0 0100 LD BC,

(1FF0) ; INPUT VOLTAGE
0005 DD2A2710 0110 LDIX2710 ; LOAD Rr VALUE
0009 21 00 00 0120 LD HL,0000 ; CLEAR HL
000C ED 4A 0130 ADCHL, BC ; ADD
000E DD2B 0140 DECIX ; DECREMENT
COUNTER
0010 CA 0016 0150 JP Z,0016 ; JUMP IF ZERO
0013 C3 00 0C 0160 JP 000C ; JUMP BACK
0016 3E 05 0170 LD A, 005 ; CALCULATE
0018 91 0180 SUBC ; DENOMINATOR
0019 32 00 40 0190 LD (0040),A ; STORE
001C ED4B0040 0200 LD BC,(0040) ; LOAD BC
0020 3E 00 0210 LD A,00 ; CLEAR A
0022 96 0220 SUB (HL) ; _HLTO A
0023 81 0230 ADDAC ; ADD
0024 F2002C 0240 JP V,002C ; JUMP IF OVERFLOW
0027 DD 23 0250 INCIX ; INCREMENT
COUNTER
0029 C3 0023 0260 JP 0023 ; LOOP BACK

002C DD 22 IFEF 0270 LD IFEF,IX ; STORE RESISTANCE
TO OUTPUT PORT
0030 76 0280 HALT ; END PROGRAM

PROGRAM 5
SAMPLE SOFTWARE FOR THE
IC TESTER CIRCUIT (FIG. 10-13)

I/0 PORTS
&H1FAl1 PIN I/O SELECT CPU OUTPUT
&H1FA2 PIN INPUTS CPU OUTPUT
&H1FA3 PIN OUTPUTS CPU INPUT
Pin patterns are stored beginning at location &H0040.
0001 3E 36 0100 LDA,36 ; SET UP INPUT

OUTPUT
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0003 32 1F Al
0006 16 00
0008 1E 40
000A 06 00
000C 47

000D 32 IF A2
0010 3A 1F A3
0013 12

0014 13

0015 04

0016 DA 001C
0019 C3000C
001C 76
PROGRAM 6

0110
0120
0130
0140
0150
0160
0170
0180
0190

0200
0210

0220
0230

LD(1FAD,A
LD D,00

LD E,40

LD B,00

LD AB
LD(1FA2),A
LD A(1FA3)
LD(DE),A
INC DE

INC B
JP V,001C

JP 000C
HALT

SAMPLE SOFTWARE FOR THE
MOTOR CONTROL CIRCUIT (FIG. 11-3)

0001
0003
0006
0008
000A
000D
0010
0012
0015
0017
0019
001B
001E
0020
0023
0025
0027
002A
002D
002F
0032
0034
0036
0039
003C

3E 00
32IF FB
3E FF
D6 01
CA 0010
C3 00 08
3E01
321F FB
3E FF
D6 01
CA 00 OE
C3 00 17
3E 00

32 1F FB
3E FF
D6 01
CA 00 2D
63 00 25
3E 02

32 1F FB
3E FF
D6 01
CA 00 01
C3 00 34
76

0100
0110
0120
0130
01400
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340

LD A,00
LD(1FFB),A
LD A, FF
SUB1

JP Z,0010
JP 0008

LD A,01
LD(1FFB),A
LD A, FF
SUB 1

JP Z,000E
JP 001B

LD A,00
LD(1FFB),A
LD A, FF
SUB 1

JP Z,002D
JP 0025

LD A, 02
LD(1FFB).A
LD AFF
SUB 1

JP Z,0001
JP 0034
HALT

»

; PATTERN

; SET UP MEMORY

; COUNTER

; CLEAR B

A=B

A TO PORT

GET ICOUTPUT DATA

STORE DATA

INCREMENT
MEMORY COUNTER

; INCREMENT TEST

PATTERN

; JUMP IF OVERFLOW

; LOOP BACK

END PROGRAM

MOTOR OFF

TO PORT

SET UP COUNTER
DECREMENT
JUMP IF ZERO
LOOP BACK
MOTOR FORWARD
TO PORT

SET UP COUNTER
DECREMENT
JUMP IF ZERO
LOOP BACK
MOTOR OFF

TO PORT

SET UP COUNTER
DECREMENT
JUMP IF ZERO
LOOP BACK
MOTOR REVERSE
TO PORT

; SET UP COUNTER

; DECREMENT
; JUMP IF ZERO
; LOOP BACK

’

; END PROGRAM

This program will turn a motor at output port &H1FFB on and
off in opposite directions for quick pulses.
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PROGRAM 7
SAMPLE SOFTWARE FOR THE
SOUND DETECTOR CIRCUIT (FIG. 11-9)

0001 06 01
0003 3A IF FO
0005 B8

0006 CA 00 0C
0009 C3 00 03
000C 16 00
000E 3A 1F FO
0011 B8

0012 CA001C
0015 14

0016 F2003C
0019 CA 00 OE
001C 16 00
001E 3A IF FO
0021 B8

0022 CA 002C
0025 14

0026 F2 00 50
0029 CA 00 1E
002C 16 00
002E 3A IF FO
0031 B8

0032 CA 0070
0035 14

0036 F2 00 60
0039 CA 00 2E
003C 00

003D 00

003E C3 00 01
0050 00

0051 00

0252 C30001
0060 00

0061 00

0062 C30001
0070 00

0071 00

0072 C3 0001
0075 76
PROGRAM 8

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480

LD B,01

LD A,(1FF0)
CPB

JP Z,000C
JP 0003

LD D,00

LD A,(1FF0)
CPB

JP Z,001C
INCD

JP V,003C
JP 000E

LD D,00

LD A,(1FF0)
CPB

JP Z,002C
INCD

JP V,0050
JP 001E

LD D,00

LD A,(1FF0)
CPB

JP Z,0070
INCD

JP V,0060
JP 002E
NOP

NOP

JP 0001
NOP

NOP

JP 0001
NOP

NOP

JP 0001
NOP

NOP

JP 0001
HALT

SAMPLE SOFTWARE FOR THE
PROGRAMMABLE SOUND GENERATOR (FIG. 12-6)

0001
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3E 38

0100

LD A,38

’
*
’
*
.

SET TEST VALUE
CHECK PORT
A=B?

JUMP IF ZERO

; JUMP BACK

; CLEARD

CHECK PORT
A=B?

JUMP IF ZERO
INCREMENT D

; JUMP IF OVERFLOW
; JUMP BACK

CLEAR D
CHECK PORT
A=B?

JUMP IF ZERO
INCREMENT D

; JUMP IF OVERFLOW
; JUMP BACK

CLEAR D
CHECK PORT

; A=B?

; JUMP IF ZERO

INCREMENT D
JUMP IF OVERFLOW
JUMP BACK

1 PULSE
ROUTINE
JUMP BACK

2 PULSE
ROUTINE
JUMP BACK

3 PULSE
ROUTINE
JUMP BACK

4 PULSE
ROUTINE
JUMP BACK
END PROGRAM

; SET ENABLE VALUE



0003

0005

0007
0009
000B
000D
000F
0011
0013
0015
0017
0018
0019
001A
001D
0021
0023
0026

D3 07

3E 54

D3 08
D3 09
D3 0A
3E 00
D3 01
D3 03
D3 05
06 00

00

00

04

F2 00 21
C3 0017
C6 01
C3 00 OF
76

0110

0120

0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280

OouT (N.A
LD A,54

OUT@®).A
OUT9).A
OUT(A)A
LD A0
OUT(),A
OUT(@3),A
OUT(5),A
LD B,00
NOP

NOP
INCB

JP V,0021
JP 0017
ADD A,01
JP 000F
HALT

; OUT TO ENABLE

PORT

; LOAD AMPLITUDE

VALUE
OUT TO EACH
AMPLITUDE
PORT
CLEAR A
OUT TO EACH

; COARSE-TUNE

PORT

; CLEARB

WASTE TIME
WASTE TIME
INCREMENT B

JUMP IF OVERFLOW

JUMP BACK
INCREMENT A
REPEAT

END PROGRAM

This program will generate a continuously changing tone.
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Index
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A breadboard system, 170
A/D converter buffer, 71
dual-siope, 146 burglar fooler, 187
single-slope, 145 bus interface circuitry, 129

AJ/D converters, 143, 205

ac circuit resistance, 38 C
ac controller, 181 capacitance meter, 213
ac values, 36 capacitances
addressing, 183 combining, 26
addressing modes, 108 carriers, 6
alarms, 198 central processing unit, 95
alpha, 8, 10 circuit design, 3
amplifier clock, 156
sense, 117 CMOS, 93
analog signals collector, 8
interfacing, 137 common base, 13
analog synthesizer common collector, 14
interfacing with an, 243 common emitter, 11
antilogarithms, 54 component values
aperture time, 140 combining, 23
assembly language, 258 computer
astable multivibrator, 78 components of a, 96
computer programs, 291
B computerized oscilloscope func-
base, 8 tions, 222
BCD, 69 conductors, 4
beta, 10 converter, parallel, 148
binary number system, 67 cosines
binary-coded decimal, 69 table of, 48
bipolar transistor, 7 counter
bistable multivibrator, 78 modulo-eight, 81
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counters, 79
CPU, 95, 97, 156

D

DI/A converters, 140, 205
decibels, 57
decimal system, 67
demultiplexer, 86, 91
detectors

broken beam, 180

smoke, 197
digital circuit design, 67
digital circuit tests, 216
digital signal, 67
digital synthesis

direct, 244
direct 1/0, 126
display drivers, 92
donor impurity, 5
dynamic RAM, 117

E
EEPROM, 122
electrically-erasable programmable-
read-only memory, 122
emitter, 8
EPROM, 121, 178
EPROM programmer, 173
erasable-programmable-read-only
memory, 121
Exclusive-OR gate, 74

F
FET, 18, 144
field-effect transistor, 18
flash converters, 149
flip-flops, 78
flowchart symbols, 261
flowcharts, 260

G
gates, 70
germanium, 4

H

heat sensor, 192
hexadecimal instruction codes for

the Z80, 283
hexadecimal keypad, 158
hexadecimal keypad circuit, 163
hexadecimal system, 69
holes, 5

IC, 21
IGFET, 20

indicators, 198
inductances
combining, 26
instruction set, 106
insulated-gate field-effect transistor,
20

insulators, 4

integrated circuit, 21
interfacing, 125

interrupt processing, 109

inverter, 71
J

JFET, 20

junction field-effect transistor, 20
K

Kirchhoff's current law, 33
Kirchhoff’s voltage law, 26

L
Laplace transforms, 58, 61
LED data readout, 169
logarithms, 47
combining, 55
common, 48
natural, 54
logic
three-state, 94
M
machine language, 258
memory, 157
semiconductor, 113
memory mapped /0, 125
memory stepper circuit, 166
metal-oxide-silicon field-effect tran-
sistor, 20
microprocessors, 95
modes
addressing, 108
MOSFET, 20
multiplexer, 86, 90
multivibrator, 76
astable, 78
bistable, 78
monostable, 76

N
NAND gate, 73
noise generator, 249
NOR gate, 74 ’
NOT gate, 71
number systems, 67

o
octal system, 68
Ohm's law, 21
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ohmmeter, 212
optoisolators, 136
oscilloscope functions
computerized, 222
output settling time, 140

P

parallel converter, 148

parallel resonance, 43

peak value, 36

peak-to-peak value, 36

photocells, 237

photoresistor, 235

pn junction, 5

power, 22

power supply, 154

programmable sound generator,
244

programmable unijunction transis-
tor, 16

programmable-read-only memory,
121

programming, 257

PROM, 121

PSG, 244

PUT, 16

R

RAM, 113, 114

dynamic, 117

static, 114
random-access memory, 113
read-only memory, 113, 119
registers, 101
resistances

combining, 23
resonance

parallel, 43

series, 41
robotic mobility, 227
robotic sensors, 230
robotic three-wheeled base, 228
robots, 227
ROM, 113, 119

S

sample and hold, 144
SCR, 17
security system software, 202
security systems, 187
semiconductor memory, 113
semiconductor tester, 216
semiconductors, 3, 4
sense amplifier, 117
sensor

heat, 192

300

sensors
robotic, 230
series resonance, 41
shift registers, 84
signals
timing, 101
silicon, 4
sines
table of, 47
slew rate, 140
smoke detectors, 197
software, 186
software for a typical security sys-
tem, 202
sound synthesis, 243
static RAM, 114
static RAM cell, 116
static RAM IC, 116
switches
bilateral, 93
door/window, 188

T
tangents
table of, 48
test equipment, 205
tester
semiconductor, 216
thermistor, 192
timer/automation systems, 181
timing signals, 101
tone generators, 248
transistor
bipolar, 7
field-effect, 18
insulated-gate fieid-effect, 20
junction field-effect, 20
metal-oxide-silicon field-effect, 20
programmable unijunction, 16
unijunction, 15
trigonometric functions, 45

UJT, 15
unijunction transistor, 15

Vv
voltmeter, 207

Z80, 97, 98

280 commands, 260

280 hexadecimal instruction codes,
283

280 instruction set, 263

Z80 interface timing, 126

Edited by Roland S. Phelps
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