ARCADIANS 2 December 4, 1978

SCME recent developments in the retail field... NCE/Compumart decided on
Dec. 1 to drop the Bally line. They will fill all back orders and repair
units. JS&A no longer shows the Bally in their catalog, and they expsct to
have their backlog substantially reduced by the end of the year, including
repair. There is an article in a recent Business Week that indicates that
Bally may drop the production of the Arcade &,,but the factory denied this
and a retraction is in progress.

THREE TONE MUSIC has been accomplished. I heard a tune the other day, and
it is not bad. At the moment, the sounds are created by direct access to
the chip via machine language, but we are getting indications of how to
do it at the BASIC language level. Seems like &(n)=p ylelds some results
when n varies from 16 to 23 ‘

ALONG the musical line, if the tone generator can be replaced by a unit
like the one described in the November 73, we'll get realism. The article
discusses a unit that varies the harmonic content and envelope of a note,
therebye making it representative of an actual instrument.

A new dealer in my neighborhood is the Emporium chain, and also Home Cinema
of Santa Clara and San Rafael. The manager of the Santa Clara store invites
Arcadians to identify themselves for special consideration. They manufacs -
ture a rugged interface switch ~the one that goes to the back of the TV-
for use with the Bally.

FOUR COLOR SCREEN is now available, as follows: substitute the desired
color number for the values n and p.

First off, split the screen with a vertical line by using &(9) = s
where s is 84 if you want the split in the middle

Use BC and FC to give the left side colors as in the book

Use &(2)=n & (3)=n to give the right side foreground

Use &(0) =p &(1)=1p to give the right side background

$ gives access to the internal calculator. Not much known about that yet
THE ADD-ON now seems to be scheduled for full marketing for next year's

Christmas season. The last inputs will be made after the January show,
and production start in April.

APPARENTLY some of the handwritten materdial in the last issue did not
reproduce well, sc it has been typed and included here:

TRY THIS: &(M)=N appears to set output

10 PRINT &(23) decimal port # to the value of N
20 GOTO 10 and

and run the program. N=&(M) appears to read the

In turn press each key in the left hand value of the M input port inte the
row and see the variable N.

appropriate numbers appear

Use this program for checking out your 10 &(16) = 5¢ (1)
controller joystick operation to see that it 20 PRINT &(16)

fimctions in all positions 30 GOTO 10

-

HERE.arg some more secrets from the depths of the Tiny BASIC . I am also
reprinting a copy of a technical paper that has a lot of background infor-
mation about the entire system. Sorry about the legibility in plages.

A couple of comments on string constants. The @ must be used with
(). Your example on pg.l did not show this and may cause confusion for
some. The characters produced with IV=@() duplicate for the most part,
the ASCII decimal code. My unit starts out with 900 strings
available, but decreases one string for every two bytes of program stored.
(Therefor 900 strings = 1800 bytes)

Other commands

10 FOR A = -10 TO 10 TBASTC has two additional commands not

20 B = ABS(A) indicated in their mammal., ABS () produces the
30 PRINT A,B absolute valueji.e., it changes a negative

4O NEXT A number to a positive. A STOP statement does

50 IF KP = M " GOTO 70 just that, and can be placed anywhere in the
60 STOP program. I use the KP statement to place a
70 voeenn temp. halt in the program. In this,

depressing a '1' causes a jump to statement
70. Any other character and the program stops.

I've had some interesting resulis with th CALL () command most
not worthy of repeating. Similar in some respects to &(13). One
of the most interesting was the display of the large GAME OVER printout
that occurs in the games portion. ‘

You might have your experts rlay with the $. Try the following
and other variations.

10 FOR A = 1 T8 256 10 FOR A = 1 TO 256
20 $ = A,B,C 20 $ = %(4),B,C

30 PRINT A,B,C 30 PRINT 4,B,C

4O NEXT A 40 NEXT A

RECEIVED a question about the hand controller connector. It is an RS-232
connector, with nine contacts. One dealer is JADE Computer Products, of
4901 W. Rosencrans, Hawthorne,CA 90250. Part number DE-9S, at $2.15. In
addition they have a cover at 1.25, to finish it off.

ARCADIANS
3626 Morrie Dr.
San Jose, CA 95127

First Class

BAS1IC Zgrass--A Sophisticated Graphics Language
for the Bally Home Library Computer

Tom DeFanti, University of Illinois
at Chicago Circle

Jay Fenton, Dave Nutting Associates

Nola Donato, University of Illinois
at Chicago Circle

Abstract

Home computer users are just now discovering
computer graphics. Modest extensions to BASIC al-
low plotting but not much more. The Bally Home
Library Computer, however, has hardware to aid im-
plementation of video games. Custom integrated
circuits working on a 160X102 pixel (2 bits per
pixel) color television screen allow certain forms
of animation in real time. To give this power to
the user, BASIC Zgrass has been designed and im-
plemented. It 1is an extension of BASIC that al-
lows parallel processes, picture objects that
move, scale and group together as well as several
drawing modes. There are also software controls
of a three-voice music synthesizer, interactive
input devices, a film camera and an IEEE bus in-
terface. We will concentrate mainly on the
language design for making it all easy to learn
and uce.

Content Indicators
1.51, 1.52, 2.12, 3.41, 3.44, 3.80, 4.13, 4.22
Keywords: interactive computer graphics, in-
tepreters, real-time, graphic language, art
introduction and General Motivation

Zgrass can be called an immodest extension of
BASIC (Ted Nelson vrefers to it as "Super BASIC"
{14). It is an extension in that graphics support
and user instruction facilities have been added to
the capability of running BASIC programs copied
out of a hobbyist computer magazine. It is immod-
est in that great liberties have been taken to
weed out some of BASIC's undesirable programming
conventions. Zgrass is actually a video game pro-
gramming language designed specifically to en-~
courage creation of beautiful animations in short
order. It is also designed to teach many of the
important concepts of interactive systems and 2-D
computer graphics.

The hardware used is the Bally Home Library
Computer built around the Bally Arcade unit. It
is a Z-80 based machine with special integrated
circuits which help the processor manage the
160x102 2-bit-per-pixel color output connected to
any standard color tv set. The alphanumerics gen-
erated by program output and keyboard input are
video mixed over the color graphics so text is not
constrained to the 160x102 format. The two bits in
eacn pixel indicate one of four bytes from which
an index into a 256-element color map 1is taken.
Thus, four of 256 colors can be on the screen at
once. The hardware also includes some tricks
which have been found useful in professional video

arcade units. Its projected cost, without color
tv, is about $750.00, including the arcade unit.

Zgrass itself takes up 16k bytes of ROM
storage and has 16k bytes of RAM for user storage
and system use. An additional 16k ROM (referred
to as the 'extension' below) plugs into the side
and provides room for a compiler and other
features. Audio cassette storage and modem link-
age to other computers is provided. Software for
driving optional intelligent floppy disk drives is
also built-in. Further hardware in this unit in-
cludes four hand controls, a 2i-key pocket calcu-
lator keyboard, a three-voice sound generator and
an IEEE Bus interface. Zgrass is the operating
system for this computer as well.

Zgrass design concepts are rather different
from those apparently underlying the current batch
of home computer systems. Home systems are now
trying very hard to be cheap minicomputers for ex-
pert users. These users when at home can be
likened to the ham radio operators of the nineteen
fifties, able to change diodes, violently shake
intermittent boards and, in general, understand
the innards. These persons can also get gratifi-
cation from fighting with manuals and the trials
of the latest software release, just as we profes-
sionals do for a living.

Zgrass, however 1is designed for the two-
hour-a-week user. This type of person is
guaranteed to continually forget the syntax and
semantics of whatever software exists. Zgrass is
designed (certainly at the cost of computer time
and memory use) so the user does not have to rely
on a manual to decipher everything. In short,
this system is trying to be the Model T of the
home computer industry, with all that implies. We
shall see.

Above all, Zgrass is designed to be as at-
tractive and as fun as pinball but considerably
more intriguing and useful.

General Zgrass Concepts

"Right away" is the foremost design concept
of Zgrass. Positive experiences in the first two
nours of play are essential. When it is not part
of your job or intended career, you must be able
to do interesting, beautiful things right away,
without reading a five-pound manual.

BASIC is now the home computer language.
BASIC was designed as a teaching language and
shines in its simplicity and easy matrix opera-
tions. It 1is, however, a poor language for the

- =

manipulation of anything but numbers. It has no
features that make writing large progams (over 200
statements) easy. Its subroutine capability is
archaic. But, it is obviously a success in what
the designers intended, otherwise it could not
presently be the universal home computer language.

In particular, though, BASIC is a poor
language for animation. To be sure, plotter art
and decaying sine curves are well suited to BASIC.
But our almost eight years of experience with the
GRASS language[2] and Dan Sandin's color video Im-
age Processor{3] as well as being directly or in-
directly involved with roughly half of the most
popular arcade video games, has given us insight
into the potentiai of a color tv set, and you just
cannot do a tv set justice in BASIC.

The next several pages will give details on
syntax of Zgrass, but first we will further con-
sider the "right away" criterion. Anyone who al-
ready knows BASIC should be able to write Zgrass
programs immediately. For those persons in Ameri-
ca who do not religiously read "BYTE" or "Creative
Computing" (a sizable part of the population), we
have been developing self-paced instructional
software for Zgrass. The prototype system now
functions quite well in GRASS (see paper by Towle
and DeFanti, these proceedings). Both GRASS and
Zgrass have enough supervisory functions and error
trapping features to allow a good
programmer/educator to write programs which exe-
cute and verify instructional programs written by
beginning students. We feel that the chief prob-
lem in teaching programming is that it, as an ac-
tivity, 1is poorly simulated by the examples and
the Backus-Naur-type syntax information usually
found in manuals. Normal programmers have fellow
workers, consultants or at least other students
around to help out. The home user has no such
recourse.

The essence of the teaching problem stems
from the fact that novices have tremendous prob-
lems with meaningless (to them) error messages.
You really have to know nearly everything about a
system before you can start knowing why what you
have typed does not work. This is absolutely not
an overstatement of the problem.

All this commentary leads directly to comput -
er aided instruction. While CAI has not quite
lived up to its expectations for teaching other
subjects, it can be used to teach people how to
program. It is relatively straightforward to lead
the user through commands, interactively teach
looping concepts and verify the results of care-
fully chosen problem sets. All possible errors
can be trapped and explained in detail. Our ex-
perience with this type of teaching is very
supportive--non-programmers {(primarily art stu-
dents and a few university officials) can be doing
fascinating graphics of great beauty in half an
hour. The whole process has the feeling of a game
and is consistently rewarding. Providing internal
system support for these teaching programs is no
doubt the second most important design concept of
Zgrass, after "right away" of course.

Note that few (if any) programming languages
allow you to write programs to interactively teach
programming. Smalltalk[}4] and Logo[5] teach by
user experimentation in surroundings not lacking
professional help. Plato[6] has no student pro-
gram or storage space (only authors can write and
store TUTOR programs). One could probably design

some CAl programs in Snobol or Lisp but these are
nardly languages for novices and they are not
known for their lucid error message handling, or
availability on wmicros. Perhaps a graphics-
extended APL might do. It would be wonderful if
the experience with Zgrass encouraged others to
design extensions %o languages with teaching in
mind.

Zgrass Technical Details

Zgrass is an interpreter of commands and as-
signment statements stored internally as ASCII
strings. These strings may be entered and execut-
ed line by 1line, formed into programs (called
"macros"), edited, and even built and pulled apart
by string manipulation primitives. (A compiler
which eliminates most of the interpretive overhead
and which takes better advantage of the resident
hardware floating point unit is part of the 16k
extension ROM.)

We are determined to maintain compatibility
with at least TINY BASIC (it is hard to say what
"standard" BASIC really is). Since BASIC has line
numbers, Zgrass labels must start with a number
(e.g. 100, 1lobekenobe, 707crash, etc.). A BASIC
program copled out of "EYTE" would simply have a
lot of extraneous labels. Labels in Zgrass are
obviously not wused to order and edit the state-
ments as in BASIC since one would hardly like to
have alphabetically ordered labels and Zgrass has
a good on-screen editor anyway. Our definition of
compatibility 1is rcstricted to executing perfect
programs written in BASIC. Getting them in, edit-
ing, executing and debugging them is done dif-
ferently.

Commands are made up of a keyword followed by
zero or more operands. Examples of commands are:

: goto L4jail

move deathweapon,x1,yl

clear

input dea,fbi,c

print beep,"who loves ya, baby?"
(some of the more idiosyncratic BASIC commands,
notably "if" and "for" have their peculiar syntax
retained for compatibility).

Commands are gentle to users. If not enough
arguments are supplied, if an incorrect argument
is given or the argument is non-existent, a spe-
cial error fixup routine is entered. This routine
prints out the command in error, points at the ar-
gument in error and says, for example, "NO! this
command wants a variable name here."™ The user can
then type in a correct argument and the command
goes on. He can also elect to enter command mode
to create a missing name, for example, and then
resume the above process. All this will happen
whether commands are entered line-by-line or exe-
cuted as part of a macro.

Note that all commands are more or less self
documenting. You can type the command name and it

- asks you for the operands. This error facility

allows one to get by trivial syntax errors without
constant re-editing. It is also a sloppy way to
get 1input to macros, although there are several
conceptually clearer (to computer folk) ways.

Many commands have options indicated by post-
fixing the command name with a hyphen plus a
modifier (e.g. "input-string" which can be shor-
tened to "in-str" or even "i-s"). The hyphenated
option construction is more English-like than

-/ 2_."‘

single-character switches and it helps keep down
proliferation of command names.

Since every command has an internally stored
list of what argument types it wants, the "help®
command can easily print these out with options
{there are about 20 different argument types in
7Zgrass, like number, string, expression, picture
prototype, array and so on). Further syntax and
semantic information is available in the manual
out the information you need most often is at your
fingertips "rizht away."”

A few more details about variables are neces-
sary. Variable names (macros are actually string
variables) can be any length and must start with
an alphabetic character. Variables used as macros
may not have names which conflict with system
names. Global variables start with lower case
letters and local variables start with upper case
letters. The system decides whether a variable is
a numeric or string variable by examining the con-
text in wnich it is first used.

(Commands are terminated by semicolons or
carriage returns. The alphanumeric generator
which is video mixed over the color graphics or
rcuted to a separate monitor puts up sixteen
32-character lines. The alphanumeric handler au-
tomatically folds lines over 32 characters long
fcr display purposes but does not insert a car-
riage return. A special character indicates folded
lines.)

Arithmetic statements are similar in format
to assignment statements in BASIC or FORTRAN, with
the exception of the left arrow used. The parser
utomatically changes equals signs (which are used
»r conditionals) to left arrows to maintain com-
patibility with BASIC yet allow a sophisticated
expression evaluator to operate unambiguously by
not having to deal with multi-purpose operators.
Examples of arithmetic assignment statements are:

abcesin(argi)+cos(arg?)

babarumel.2

cewnodunit(f,g,huh)
where the last example contains a user-defined
function (a macro, of course).

Numeric variables are kept in fixed or float-
ing point by the system, switching mode as neces-
sary without user knouwledge. The luxury of a
floating point arithmetic unit helps calculation
sp=ed considerably. There zre also reserved sys-
tem variables which hold the values of the hand
ccntrols, keypad keys, external 1I/0 strings and
otner special things.

Strings are assigned as follows:

tom9y'this is a single line"
samytom&tom&babarum

cry'
L}

n ¢

1

mymacroXprint tom,cr,tom," again"

stuffakhello> ;. stuff gets "helld

for a=1 to 10
print stuff,a

next a>
The last example shows nested assignments and a
way to create a macro. Note that acceptable

string delimiters are ",',<,>,[, and], the 1last
four of which must be balanced. String decomposi-
tion is handled by a variety of string commands in
tne 16k extension.

; .concatenat

; .to enter a carriage return

Macros

Any string can be executed in Zgrass. If it
contains meaningful commands, it can be used as a
program. Again, programs in Zgrass are called
"macros." Macros can call other macros, call them-
selves, execute in foreground or in parallel with
other macros in the background, supervise other
macros and interact with macros running on other
Zgrass machines.

Zgrass differs from BASIC greatly when it
comes to subroutine 1linkage. Zgrass has a very
convenient and conceptually clear way of passing
arguments--you simply make believe the macro is a
command and use standard command syntax. Further-
more, the "input" command (for numbers) and the
"input-name" and "input-string" commands (for
strings) fetch the arguments passed in a way that
automatically request user input from the terminal
if not enough arguments are passed. This linkage
is discussed in more detail below.

Looping and control transfer is done with
"goto," "for/next" and "gosub." (Gosub is re-
tained for compatibility.) A version of goto
called "skip" has the option of jumping relative a
number of lines, a good feature for those quick
loops in which you forgot to put the label. There
is also a "return" command which can pass an argu-
ment back if it is a function call like "whodun-
nit" above.

When a macro is asked to execute (by typing
its name as the first thing on a line, like a com-
mand), the system builds a macro invocation block
(MIB). The MIB holds information about local
variables, for/next blocks, argument and data
lists and so on. When the macro is done, the MIB
is deleted along with all the pieces hanging off
it. The storage allocation/reclamation algorithms
used are again similar to GRASS's.

Numeric arguments are passed using the "in-
put” command. It is similar to "input"™ in BASIC
but it first checks the argument list. If there
is an argument, it is grabbed. Otherwise, the user
is requested to enter the value. Input works in
concert with "print" which supresses output when
arguments are present. (Of course, there are op-
tions to input and print which force terminal
1/0.) Thus, a macro that has lots of prompting in-
formation c¢an be called by another macro without
all sorts of editing to remove the prompts, but
the macro will wake up and start asking questions
if not enough arguments are supplied. One can
create self-documenting macros which are effi-
cient, yet help out when necessary. (How many
times have you forgotten the arguments to a
subroutine?)

The "input-name" command functions similarly
for strings and is used to get names passed as ar-
guments. You use the "8" operator to indirectly
reference strings. For example:
getandmovey<lagain print "gimme a pixname™

inp-name gettemp ; -get name

if gettemp='"',return 3 .1f null, return

get-tape @gettemp ;-get it from tape
move 8gettemp,x3,y3 ; -attach control3l

display @gettemp ;.and show it

goto lagain>

getandmove apple,witch,titles,,

where the last line is the call and the lines
above are the macro definition presumably entered
before the call. Comments are lines or sub-lines
which start with a "."

The "input-string" command expects string
delimiters around arguments passed so that whole
commands can be arguments (you cannot pass a comma
with the input-name option). This is important for
tne construction of teaching and verification pro-
grams, among other things. If the argument is not
there, input-string will require input from the
keyboard, but without the string delimiters, just
like input-name.

The principle here is to make macros 1look
like system-defined commards as much as possible,
a rather loose definition of extensibility, but
one that is meaningful when speaking about inter-
preters (a conclusion adapted from comments in

rh.
Picture and Pattern Drawing

Zgrass has several predefined variables which
cause drawing on the screen when they are written
into. To display a point, you set variables xs
and ys to the x and y coordinate. When you set
variable cs to a value from one to four, the point
is displayed with the color value indicated by the
value of c¢s. There are also the "line," "box," and
"eirele" commands which draw vectors, and filled
rectangles and ellipses on the screen.

Picture Animation

Once a picture is drawn on the screen, all or
part of it may be stored as a picture prototype
with the "snap" command. Picture prototypes are
pixel 1lists in this case and are kept in user 16k
RAM rather than in the screen 4k RAM. So, a pic-
ture is something you see on the screen and a pic-
ture prototype (or "prototype" for short) 1is its
representation in user meacry.

One then attaches the prototype to a vari-
able, time-based variable (a user-defined special
variable whose value varies automatically over a
given time period), hand control, or user-defined
function. The prototype 1is displayed with the
"display" command. After that, anytime the vari-
able or function changes, the prototype will be
erased with an "exclusive or" write and rewritten
with its updated translation or other transforma-
tion with an "exclusive or"™ write. This technique
lets pictures of one color pass over pictures of
another color without leaving holes (using stan-
dard bit plane raster scan graphics techniques).
There is an interrupt level routine which manages
movements of prototypes and a host of other de-
tails, along the lines of a conventional refresh
graphics driver. The user has a simple way to in-
dicate what maximum percentage of time should be
allocated to interrupt level updating, the rest
being left for command processing.

The same interrupt routine also manages pic-
ture prototype lists made up of lists of points,
vector endpoints, box and circle drawing informa-
tion. With the 16k extension, rotation and scal-
ing of these lists is possible. Prototype 1lists,
of course, have to be built up rather than snapped
using options to the line, box and circle com-
mands. The wuser can access individual endpoints
and manipulate the prototype as a whole. of

course, there can be many prototypes floating
around at once.

Again, the user's aesthetics and perceptions
are essential. Since everything is real-time (or
close to it) the user can easily see the effect of
various commands on the screen, the implications
of varying amounts of interrupt processing time,
the ways of using different colors, and so on.

Prototype lists and patterns can be grouped
into a tree structure which allows concatenation
of transformations. Moreover, the '"select" com-
mand specifies a sequence of pictures to be put up
and erased in round-robin fashion (imagine several
views of a walking "man" being switched to provide
the illusion of walking). A simple Super 8 camera
hookup allows more complex, synchronized sequences
to be filmed, if desired.

Conclusions

Zgrass is designed to be a first programming
language which encourages both novices and experts
to learn about color graphics, generate meaningful
and pretty displays, possibly make Super 8 movies,
and perhaps even access governmental databases and
control electric train sets. The software is
designed to be multi-leveled and rich with feed-
back. Considerable research into the teaching as-
pects nas been folded into the design.

Continuing developmental eifort along these
lines now concerns higher resolution displays,
much faster microprocessors, parallel programming
techniques and .connection to videodisks and other
television equipment. Zgrass is one way you can
control the amount of sex and violence on your tv
set.

References

1977, p. 79.
[2]) DeFanti, T.A., "The Digital Component of the
) Circle Graphics Habitat," Proc. NCC, 1976.
[3] DeFanti, T.A., Sandin, D.J., and Nelson, T.H.,
"Computer Graphics as a Way of Life,"
Computers & Graphigs, Vol. 1, No. 1, May

{1) Nelson, Ted, The Home Computer Revolution,

1975.

{4] Goldberg, A. and Kay, A., Smalltalk-72
Instruction Manual, Xerox PARC i#ss176-6,
March 1976.

{5] Papert, Seymour, A Computer Laboratory for
Elementary Schools, Logo Memo 1, MIT Artifi-

cial Intelligence Lab, October, 1971. .

(6] Alpert, D., and Bitzer, D., "Advances in
Computer-Based Education, Science, Vol. 167,
March 1970.

{7) Feldman, J.A., "Proceedings of the Extensible
Languages Symposium," SIGPLAN NOTICES, Vol.
4., No. 8., August 1969.

Addendum: Zgrass Command List (in addition to
BASIC)

(The commands beginning with a '"#' are in the 16k
extension.) (Not all options are indicated.)

—)=

IN DEPTH NON-PROFESSIONAL VIEW OF &(9)

If you set up a loop FOR A= 1 TO 200; &(9)=A; NEXT A
you will see a vertical line wiping the screen from left to right, color
changes, and sometimes a blanked-off area at the top and bottom. I have
been doing a little research with the following results.

The world of &(9) can be envisioned as a panorama of scenes laid
side by side, with a "Home Scene" in the center. The Home Scene is the
one we see thru the TV "Window" when we normally use the TBASIC. Spreading
to each side are a number of scenes, ths first few of which will be des-
cribed. Each scene has the same dimensions as the TV Window, something 1like:

| ‘(”Z,.’”,l s [T

- -
- -7

A TN Do , //// Home
X sScens
RV

If you set &(9)=p, you will view the first scene, with the background
in color. In this scene, the color controls FC and BC do not work. Instead,
&(11) gives the background and &({d) gives the foreground. This is #! above.

If &(9)=37, you will see another scene, #2 above, but it is now like
the Home Scene in that FC and BC again operate. These types of scenes alter-
nate as a general statement. The next in line, #3 above, is set at &(9)=63,
but there is now a border above and below the text area of the screen -
and &(2) provides the foreground color while both &(Z) and &(11) will give
the background, and &(1) controls the border.

We can xeep moving sideways, jumping from scene to scene with the
following generalities: The width of a scene is either 26 or 38 “numbers®
wide. The numbers are the values of A, so that setting A equal to 62 1¢2
127, etec, will give you a full view of the various scenes. Actually there
seems to be a tolerance of + 1. The scenes alternate between white back-
grounds and colored backgrounds. The white backgrounds have the 26 number
wide scenes. And the same kind of story takes place in the -A direction.

Color control in the 'odd! scenes is inconsistent, as the follow-

ing table shows: sca~veE i |} #/ L #3 | #<
FoREroomD K@) | &@ | &)
B/JO(;,QO()N) & (i) i&(//)a;{g@)l &) o &)
Bode | nia i & (’) I (’L)

If &(9) is set to some intermediate number, say &(9)=7C, you will
see parts of twe scenes at once, and since adjacent scenes have a dif-
ferent color control scheme, you can get multicolors on the TV Window.
With the above example, the Window w111 see:

j A, — v e -
'l _____ Aj}'LJ &(_l)

The words written on there are written on the Wwindow, overlaying

the split screen.

Caveat -~ the description of scenes is a personal attempt to under-
stand the wzfld of &(9)\§nd has a number of conceptual errors in it. rf

£/
i
191 1és rzy r02 &3 37 & o ‘_24, 7 %o ;28 ~/55 .
- o =

—-/S -

EXECUTIVE SOFTWARE data is now available from me at $!. to cover printing and
postage. This is of value only to those conversant with assembly language. It
was developed by Tom Wood and provides internal locations of most of the data ,
subroutines, etc., that'?programmer would find useful.

HERE 'is a portion of the ASCII
code, as it pertains to the Bally.
Use @&(n) where n is the number

in the Decimal column.

]
- E
™ " %] -E F
SERVICE MANUAL PA-1 by Bally is g8 ¥ Ko 3 3 3
now available from me at 31. to § = == 6 a =
cover nailing. Not too detailed 57 00100000 040[032] 20
but it does have the schematic, 1 | 00100001 041}033] 21
a parts list, and a parts layout. ~ | 00100010 042§034{ 22
¥ ’ ¥ v # | 00100011 0431035]23 2101000001 101 joes} 41
. - . $ | oo100100 044j036{ 24 101000010 102 l066| 42
CURRENT PRICING of the Videocades % | 00100101 045§037|25 C 101000011 103{067} 43
is as follows: & | 00100110 046jC38}26 2;01000100 104 1068} 44
19.95 - 2001 24.95. 200 * ¥ ooton111 047§029)27 01000101 105 069! 48
7495 2002 72 9002 (} 00101000 050|040} 28 F |01000110 106 j070! 45
“v } 1 00101001 ©051{041]28 Glotooo111 107l071l47
200k 3001 « | co101010 0s2j042|2A H} 01001000 110}072: 48
3003 3002 +] 00101011 053{043]|28 1 101001001 111073 49
3004 1002 , 100101100 054 jo44]2C J {01001010 112074144
4001 002 — } 00101101 055 [045]20 K 01001011 113075 48
5 . 100101110 056 {046]2€E L {01001100 114 [076. 4C
5001 / 100101111 057 1047§2F M{01001101 115077/ 4D
S oy oconamo mopie NI ekt
Not hat *] 1{ 00110001 061 D4g| 31
Note that vh? number of games 2| 00110010 062-Fs0} 32 P {01010000 120{D8O} 50
has no relation to the price. 3}00110011 063 Ps51}33 Q101010001 121081} 51
4|00110100 064 52|34 R }01010010 122082 52
3T - 5] 00110101 065 PS3| 35 S 01010011 123083 53
LIST o.f all charaqters and’com | o Si18 08& kst e ¥ laroionte Yo ke Sa
Eands 1is ger;eratea by this: . 2100110111 067 loss| 37 U 01010101 125 loss &5
FOR A = 0 TO 120~ 8 | 00111000 070 loss| 28 v {01010110 126 j086! 56
TV=4A 9} 00111001 0713057{ 39 wi01010111 127087 57
3(10)=4A : §00111010 072 [058{3A X 101011000 1301088 58
; Joo111011 073}059{38 Y 101011001 131089 59
NEXT A <] 00111100 074 ic Zz 101011010 132!09G 5A
The cnaracters at positions 100 = { 00111101 075061} 3D { 161011011 133]091i 58
to 103 have no meaning and are >{00111110 076]062| 3€ l\ gzg:ngo 134;092 5C
d $17 7 {oo111111 077 1063| 3F | 1 135093 5D
UREC Ta T11l unueed Spaces. @1{01000000 100 (064] 40 A {01011110 136 -!094': 5€

APCADIAN

Robert Fabris,Staff
3626 Morrie Dr.
San Jose, CA 95127

FIRST CLASS

-~

