

1 of 7

Astrocade Machine Language Programming Tutorial

"The Bit Fidder's Corner"
By

Andy Guevara

 The author of this tutorial, Andy Guevara,
programmed the Machine Language Manager
cartridge for the Astrocade. This tutorial
complements that cartridge, but has a general focus
so this information can be used without
reinterpretation by Astrocade assembly programmers,
or those wishing to learn about the machine.
 The complete five serialized machine language
tutorials here were originally published in the
"Arcadian," a newsletter for the Bally Astrocade
computer/console. The serial series appeared in 1983
and 1984 in volume 5, pages 42, 43, 47, 114, 132,
133 and volume 6.

Part 1

 Hi there! This is the first installment of what I
hope will be a long and prosperous relationship
between you, me, and the ARCADIAN.
 The aim of this column is simple--to dispense as
much "inside" knowledge as possible about the
workings of the Astrocade. This means down to the
bit level if necessary. I plan to cover a lot of the
material referred to in the on-board subroutines
manual put out by the ARCADIAN. You might want
to pick up a copy. By the time we're done, we ought
to be able to do just about anything a microcomputer
is supposed to be able to do.
 First, some preliminaries: I won't be using BASIC
very much in my examples. The reason for this is
that the Astrocade innards are not programmed in
BASIC. BASIC as a language, is itself a program
and a series of subroutines that sits between us and
the Z-80 microprocessor. So, as a rule, I will be
talking primarily in Z-80 machine language. I know
there's not a lot of you who will understand it right
off, so the first couple of installments are set up to
familiarize you with the terminology and conventions
used in programming at the byte level.
 I see that it's time for a sales pitch... Since I won't
be using BASIC, how am I going to try out examples,
you might ask? Well, the answer is simple. We at
The Bit Fiddlers have developed a cartridge we call
the Machine Language Manager.
 So as to help explain what it is, let me first explain
what it isn't. The MLM is not a language cartridge

like BASIC is. As I said earlier, BASIC is a
program. It translates your BASIC statements to
machine code (that is, instructions the Z-80 can
understand) on a line-by-line basis, interpreting each
statement as it goes. This is why there are line
numbers; so the interpreting process doesn't get lost.
This also explains why BASIC programs are
relatively slow.
 The MLM, not being a language; doesn't need line
numbers. It works directly on the Z-80 memory. It's
what is known in the trade as a Monitor program. Its
purpose is to directly enter and change values or
instructions the Z-80 will understand. This way you
get to tell the Z-80 precisely what to do.
 What this means is, in order for you to use the
MLM, you're going to have to learn to use Z-80
machine language. But then, that's why this column
is here... to show how the Astrocade works--in
machine language.
 A little more on the MLM. We've put in a few
helpful capabilities, such as a formatted listing,
ability to change the register contents, cassette tape
storage routines for use with the original 300 Baud
interface, and a print routine for those of you who
have connected a printer to your unit. There are also
routines in the cartridge to clear the screen, change
the amount of memory available for your programs,
and output single characters or whole lines to the
screen or printer.
 So these are the advantages:
 1. You get faster-running programs
 2. Programs take up less space than their
 BASIC equivalents
 3. Memory can be rearranged to allow
 over 3K Bytes of storage
 4. You get 4 colors for either side of the
 Right/Left boundary instead of 2
 5. You get direct access to the on-board
 subroutines for animation, character generation,
 graphic effects, timing, and sound effects. In
 other words, you have the capability to produce
 cartridge quality programs that are storable on
 cassette tape! Trust me.
 But back to what I set out to do.

2 of 7

 The Z-80 talks in, and responds to Bytes. Fine,
what's a Byte? Well, a Byte is made up of 8 Bits. Bit
is short for Binary Digit. So the Z-80 talks in Binary.
 Think of it this way: At the Z-80 data port there
are 8 ON-OFF switches lined up side by side. There
are only two states each switch can be in: ON or
OFF. This is how Binary (Base 2) arithmetic works.
 To give the Z-80 a particular instruction code, we
can set the switches to a particular combination of
ON and OFF states. Let's assign the number 1 to the
ON state and 0 to the OFF state. Now we can do it in
terms of a binary code, such as 01100110.
 Well, there's a better way yet. We can translate
this binary number into one we can better understand.
For example, 00000001=1 Base 10. Simple enough.
Let's drop the leading zeros for now. OK, let's add
1+1 in Base 2: 1+1= ? Since values can only be 1's
and 0's, we have to put a 0 and carry a one into the
next column. The answer then is 10 in Binary, 2 in
Base 10.
 Well what's all this mean? It means we don't have
to keep track of Z-80 instructions in configurations of
8 individual bits. We can do it by converting to
numbers.
 Binary goes like this:

 0000 0
 1 1
 10 2
 11 3
 100 4
 101 5
 110 6
 111 7
 1000 8

and so on, to 255 for all 8 hits being turned ON. But
this is a little unwieldy if we have to go back and
forth to the Binary form. So let's try a different
approach.
 Break the 8 bit configuration into two 4-bit
subcodes, like 0110 0110. Now each subcode, called

a Nibble (honest!), can be a number from 0 to 15.
Let's further constrain it by saying each nibble can
only have a 1-digit representation. That would sake
0110 0110=66 in the new code.
But what about the numbers 10 to 15? Well, since
we can't have 2-digit nibbles, we'll assign the letters
A through F for these values. Welcome to the
Hexadecimal world!
 In this system, each four bits represents one
Hexadecimal column. That is: F+1=10 in Base 16. It
equals 16 in Base 10.
 The reason for all of this is that almost every book
ever written for the Z-80, or any other
microprocessor, leans heavily on Hex numbers. At 2
digits per byte you can see why, in terms of printer's
ink alone!
 OK, we know that Z-d0 instructions are coded in
Bytes made up of 2 Hex digits. But how do we get
the codes into memory? And where do we put them?
How does the Z-80 know where to go to get at them?
Answers to these and other burning questions will be
in next month's column.
 One last thing. I'd like to hear from you and what
you think about the column. Is it at too low a level or
too high? Also, are there any requests? Do you have
a particular problem or application that you would
like addressed? Drop me a line!
 The format of the column is still flexible and
YOU are the ones to benefit. See you next time.

Part 2

 Hello again! Last month we covered a little bit of
binary and Hexadecimal code and talked a little about
what bytes are. This month, knowing that the Z-80
responds to these 8 bit lumps called bytes, we'll go
over how and where to put them into memory.
 But first, to help you along with Hex numbers,
I've put in this handy-dandy table.

Hexadecimal Columns
6 5 4 3 2 1

HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC
------------ ---------- --------- --------- --------- ---------
0 0 0 0 0 0 0 0 0 0 0 0
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 727,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 7,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 14,680,O64 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,810 F 240 F 15
-------------------------- ---------------------- ----------------------
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 1 2 3 4 4 5 6 7

BYTE BYTE BYTE

3 of 7

 To show how it works, we'll do a few Hex to
decimal conversions, since a lot of people don't
believe that Hexadecimal is a real number system.
As you recall, Hex is a base 16 number system. This
means there are 16 distinct numbers per column. In
base 10, the numbers for any column are 0 thru 9. So
it is for Hex... except we have to invent characters for
the numbers above 9. To make them memorable,
we'll make those characters A thru F.
 Take a look at the columns under the heading "1"
on the table. The numbers under the heading 'HEX'
are the Hexadecimal numbers (clever, right?). Notice
the corresponding values on the right. It's all the
same until you get to A. Like with decimal, when
you get to the largest value you can have in a column,
to make the value one larger, you put a zero then add
one to the next column, on the left. Like going from
9 to 10. Except it's F to 10. Anyway, let's do a few
examples.
 Since we're working with numbers 4 digits long,
we'll only use the columns labeled 1 thru 4. Let's
take the number 4000H. The 'H' is there to identify it
as a Hex number. To convert, take the leftmost digit,
and find it in the table under '4'. To the right of the
digit will be its decimal equivalent. You should have
found 16,384. The remaining three digits are zeroes,
and equate to zeroes in decimal. Adding up all the
equivalences gives us 16,384, as you might have
guessed. As you probably already know, this is the
value of the first address in RAM memory. But more
on that in a bit. Let's do FFFFH.
 This one's easy too. Since F is the last entry in
every column, we take the last corresponding number
in each of the four columns and add them together:

 61,440 + 3,840 + 240 + 15 = 65,535

which is the highest 4 digits can go. The same
operation applies for any Hex number conversion.
So, let's get on to other things.
 As luck would have it, each byte in memory has
its own unique address. This address is a number,
two bytes (sixteen bits) long. Being sixteen bits, the
address can be a value from zero to 65,535
(affectionately known as 64k) in decimal, which is
zero to FFFF in Hex. The designers of the Astrocade
decided to assign certain address ranges to specific
purposes. For instance, the system programs in ROM
(Read Only Memory-you can't change it), start at
address 0000 and proceed to address 1FFF in Hex,
which is 8191 in decimal. Starting at address 2000H
and going on up to 3FFFH is address space available
for plug-in cartridge ROM. There is no physical

memory at this range of addresses until a cartridge is
put into the slot.
 RAM memory (standing for Random Access
Memory, which doesn't really say that it's alterable,
although it is) starts at address 4000H (16384
decimal). This is where all user programs, variables,
and graphics go. It continues on to 4FFFH which is
the last address used by the Astrocade. All of this
RAM area, believe it or not, is mapped to the TV
screen. It's where you put information when you
want it to show on the screen. There are tricks to
hide it when you don't want it to show, but we'll get
to that in our segment on graphics.
 When you add external memory to the system,
you have to make it respond to the addresses above
5000H so that you don't interfere with memory inside
the Astrocade. This added memory is not mapped to
the screen, so it's entirely available for programs and
data. We'll explore the implications of that idea later
also.
 Got all that? I didn't think so, but let's forge ahead
anyway. You can see that unless we have external
RAM, we can only use the address space from 4000H
to 4FFFH for our programs. All the rest is previously
assigned. We'll get into particular addresses a little
later when we start putting together programs of our
own.
 This seems like a pretty good place to close it up.
Next time, we'll take a look at the Z-80's instruction
set, and get a feeling for how the registers are used.
Who knows? Before long we may be able to figure
out what Mike Skala was talking about in his column
on graphics. Hang in there!

Part 3

 Hello again! Time to forge ahead in our quest for
Z-80 knowledge. Last time we went over the
Hexadecimal number system. Today we're going to
cover the Z-80 registers and a few of the instructions,
so we can get a feel for how the little monster is
programmed.
 I'm sure you're all aware of the variables A thru Z
as used in BASIC. Well, the Z-80 has several
internal storage places of its own that are not unlike
the BASIC variables. These are the registers. They
are 8 bits wide, meaning they can hold values from 0
to FF (255 for you decimal types). Most are general
purpose, but a few are reserved for special uses.
 The registers are used primarily for storing
information for quick access, and for doing most of
the arithmetic functions of the instruction set.
Another use is to hold an address for accessing data

4 of 7

from memory. In this case, two registers are paired
together to form a 16 bit address word.
 The names of the registers are: A,B,C,D,E,H, and
L. Clever huh? Any of these can be used to hold an
8 bit value. The A register is the most often used
because the answers to 8 bit additions, subtractions,
and other computations end up in the A register. For
16 bit manipulations, the pairs BC, DE, and HL are
used, with the answers going to the HL pair.
 The HL pair is important for another reason.
When moving data from one location in memory to
another, or loading one of the other registers with
data from memory, the HL pair can be used as an
intermediate addressing register. That is, I can put an
address in HL, and load the A register with the data
located at the address held in HL. Further, if I need a
string of values, like in a table, I could put the
starting address of the table in HL and load A from
(HL). The parentheses mean "the location addressed
by." Remember that. Getting the rest of the values
from the table is then just a matter of incrementing
the value in H and L and performing the same load
instruction.
 The H and L registers are so named because they
hold the High and Low bytes of an address in
memory. The other names were simply done for
convenience.
 Well, that ought to be enough on the registers.
Let's see how the instructions look. Going back to
the small example above, we loaded the A register
from a place in memory addressed by the HL register
pair. The instruction for this looks like:

 LD A,(HL)
This is the standard format for Load type instructions.
The destination of the data comes first, then the
source. In this case, the above instruction is read
"Load A from the memory location addressed by H
and L."
 There are other ways to put data into a register.
We can get it from another register:

 LD A,B
or we can get it from memory directly:

 LD A,(4A00H)
or we can load the value immediately:

 LD A,4
 These are what are referred to as "addressing
modes." Let's do this the right way:
 LD A,4 is the IMMEDIATE mode
 LD A,B and
 LD A,(4A00H) are the DIRECT mode
 LD A,(HL) is the INDIRECT mode.

 In the IMMEDIATE mode, we get the data from
the program itself. It's like A=4 in BASIC. In the
DIRECT mode, we get the data from another place,
either another register or a memory location (in this
case memory address 4A00H). This is like A=B, or
A=%(18944). The INDIRECT mode of addressing
takes us one step further away by having to know
what is in the HL pair first. This is like A=%(B),
where we had set B sometime earlier. There is also
an INDEXED INDIRECT mode, but I don't want to
overload you just now.
 Remember that our Z-80 only recognizes
numbers. That means that we can't use the shorthand
instructions above directly. What we have to do
instead is supply the Hex numbers that correspond to
the instructions.
 For instance,
 LD A,4
converts to
 3E 04
Simple, right? I didn't think. so. Every instruction
the Z-80 knows is represented by numbers that are 1,
2, 3, or 4 bytes long. All told, there are 696
instructions in the set, so you can see why the
shorthand notation is used.
 From here you can see the need for a good list of
the Z-80 instructions (or OP-CODES as they're
called). Most (if not all) of the books on the Z-80
have a list in alphabetical order of the Op-codes (also
known as mnemonics, the first 'm' is silent), and a list
in numerical order of the corresponding Hex
numbers.
 In future columns, I will explain groups of
instructions rather than try to go through all 696 of
them. And in cases where I show a program, I will
also include the Hex numbers (Object code) for the
instructions I use.
 See you next time.

Part 4

 I'm sure by now that a lot of you have gotten some
of the 'inside' information on the ARCADE's on-
board subroutines. It was one of the first things I sent
away for. The question is, how many of you were
able to make heads or tails of the information?
 Well, that's what the aim of this column is:
explanations of some of the routines and how they
are used.
 This all assumes, of course, that you have a
working knowledge of Z-8O machine code. If you
have that much, then experimenting using BASIC or
the Machine Language Manager should be easy for
you.

5 of 7

 Probably the most informative of the documents
put out by the ARCADIAN was the on-board ROM
description written by Dave Nutting & Associates. It
was almost written in English. I say 'almost' because
some things were assumed to be common knowledge,
and others had missing information or explanations
that fell short.
 Since this is the heart of the ARCADE, we'll be
covering the subroutines in a little more detail than
the Nutting manual. Hopefully, we won't have to dig
into the source code to find all the answers.
 First, some preliminaries. All of the on-board
Subs have to be called by using the code "FF". The
ARCADE is designed to recognize this value as a
system call. For my own use, in the assembler that I
use, I've defined the labels "SYSTEM" and
"SYSSUK" to be the value FF (255 Decimal). The
Nutting manual uses these two labels in describing
each of the subroutines. The two labels indicate how
the arguments (additional information) are to be
delivered to the subroutine.
 In all cases, the subroutine number refers to the
'SYSTEM' convention. The subroutine number is
what the ARCADE operating system uses to get to
the right subroutine. The method used here is to first
load the registers with the right arguments, then issue
the system call sentinel, SYSTEM (that is, FF), then
the number of the subroutine.
 For instance, to call subroutine number 1A
(Hexadecimal for 26), using the SYSTEM
convention, we would first load all the pertinent
information into the registers, then put FF as the
opcode, followed by the value 1A. It assembles
thusly:

11 00 4A LD DE,4A00H
01 00 11 LD BC,1100H
3E 00 LD A,0
FF DEFB SYSTEM
1A DEFB FILL

 The Hex object code is shown on the right. With
these instructions the subroutine 'FILL' is called, with
execution returning to the very next instruction after
the subroutine number. We'll get to what this
specific subroutine does later.
 The SYSSUK version of this same call looks like
this:

FF DEFB SYSSUK
1B DEFB FILL+1
00 4A DEFW 4A00H
00 11 DEFW 1100H
00 DEFB 0

 Notice that you don't have to go through the
expense of loading the arguments individually. They
are "sucked" into the proper registers by the
ARCADE operating system. The order that they are
put in is therefore very important. Also notice that
the subroutine number is 1 greater than before. This
will always be true, and is how the operating system
knows the difference between SYSSUK and
SYSTEM. SYSSUK requires the subroutine number
to be one more than its usual value. And SYSSUK
will always use an ODD subroutine number.
 The advantage of the SYSSUK structure is more
compact code. The disadvantage is the inflexibility.
It is better used for absolute cases than for iterative
loops. Like for borders that will always be in the
same place, rather than objects that will move across
the screen.
 A last important point. When returning from a
system subroutine, unless otherwise stated, the
registers will be set to the loaded values. That is, the
values that were loaded before a SYSTEM call, or
the values picked up by a SYSSUK call. The
exception is when a specific result is to be returned in
a register or registers.
 So, now that that's out of the way, let's begin. The
very first subroutine, 00, is pretty interesting. This is
the system interpreter, not to be confused with the
BASIC interpreter. What this routine does is allow
the stringing together of several subroutines under
one "call." There are no arguments associated with
this routine. It looks like this:

FF DEFB SYSTEM
00 DEFB INTPC

 The subroutines you want to string together then
follow the above without using the FF sentinel. For
instance, using the FILL example from above, we
could fill three different areas of the screen like so:

FF DEFB SYSTEM
00 DEFB INTPC

1A DEFB FILL
00 40 DEFW 4000H ;WHERE TO START
10 00 DEFW 10H ;HOW MANY
00 DEFB 0 ;WITH WHAT

1A DEFB FILL
20 40 DEFW 4020H
10 00 DEFW 10H
11 DEFB 11H

1A DEFB FILL
30 40 DEFW 4030H
50 00 DEFW 50H
FF DEFB 0FFH

02 DEFB EXIT

6 of 7

 The last byte is the subroutine for leaving the
interpreter and returning to normal machine
language. There are no arguments associated with
EXIT either.
 To allow the interpreter to work a little more
efficiently, there are subroutines for jumping and
calling from within the interpreted string.
 Subroutine 04, RCALL, is for calling a standard
machine language subroutine from within an
interpreted string. For instance,

04 DEFB RCALL
20 4E DEFW 4E20H

would call a machine language subroutine at address
4E20H. That subroutine would end with a standard
RET (C9), and control would return to the next
subroutine in the string.
 Subroutine 06, MCALL, is similar to RCALL,
except that the call is to another interpreted string of
subroutines. If we had an interpreter string at address
4E20H, then the call would look like:

06 DEFB MCALL
20 4E DEFW 4E20H

 The called string would have to end with
subroutine 08, MRET. This would make sure the
return was to the correct place.
 The final interpreter-related subroutine is number
0AH, 10 for you Decimal types. This is the MJUMP
routine, which does a direct jump out of one
interpreter string into another. The form is:

0A DEFB MJUMP
20 4E DEFW 4E20H

and, of course, the target of the jump has to be an
interpreted string itself.
 Well, that about wraps it up for now. I don't
intend to take all the routines numerically down the
line like today. Instead, I'll skip around and try to
explain how groups of subroutines work together.
This way we'll take some of the mystery out of
animation, joystick control, and interrupts and such.
 By the way, for those of you who don't recognize
some of the assembler directives I use:
 DEFB stands for 'Define Byte"
 DEFW stands for "Define Word"
 DEFM stands for "Define Message"
 DEFS stands-for "Define Storage".
We'll use the last two in examples in upcoming
articles.
 See you next time.

Part 5

 Well maybe not ALL of them, but enough to get
you on your way...
 The largest single source for machine language
techniques for the Astrocade is the system description
known affectionately as the Nutting Manual. This
one document has been the source of almost all the
machine language routines used in the latest
generation of games (and, from the beginning, in all
cartridge games).
 Granted, you do need to know something about Z-
80 machine language before tackling this manual.
But if that's not a problem, then this is what you need
to get that space war game of yours off the ground.
 Curious? Let's take a look at L&M'S Ms.
Candyman... What's the first thing you notice? The
music of course! There's a complete music processor
in the ROM chips on board the Astrocade just
waiting to be tapped. And it's done in a much easier
way from machine code than from BASIC. There is
also information on making rectangles of any size,
much like the Box command. And for drawing
patterns on the screen from memory.
 Probably what you're most interested in are the
routines used to move objects around the screen.
Well, there are two ways to do this. The first is to
make your own character set with characters of your
own choosing. Like a gremlin instead of an "A."
Then it's a matter of "printing" them wherever you
choose. The second method is to use the vectoring
capability of the Astrocade. By setting up a block of
memory for specific information, you can let the
system take care of moving your character around the
screen, keeping track of the movement limits you've
defined, and whether or not he's supposed to bounce
off walls, etc. That's the one we used. By using the
system functions as often as possible, we only needed
to develop our own framework to direct the activities
of the game. Would you believe that we don't control
the notions of the Jokers in Ms. CM? The Astrocade
does it for us! All we do is set the speed and stand
back...
 Did you know that the SNAP function is built into
the system? From machine code it's easy to get to
and use. Of course the SHOW function is there too.
There's also the capability to scroll any part of the
screen, and define the size of the scroll window.
 For keeping track of data, there are routines for
handling tables of bytes, words, or nibbles easily. I
use these a lot.
 Here's a very little known fact... On board the
system, there is a set of floating point math routines.

7 of 7

And they're not even described in the Nutting
manual! I always thought this strange, since the
calculator programs haven't been giving back integer
answers. A little sleuthing into the source code of the
unit showed these routines. And if you're real nice, I
might explain how to use them. Suffice to say that
about half of the 200+ page manual is the source
code of all that is in the ROM set of the Astrocade.
This has been most helpful when the descriptions of
routines were less than adequate (which is about half
the time).
 Once you get the hang of it though, you'll find the
manual indispensable. I have!

 -- Andy Guevara 1983/84

 -- These tutorials converted to text, and then to
RTF, by Adam Trionfo, January 13, 2002

	Untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

